

ユーザーズマニュアル

EtherCAT ちゅう丸くんシリーズ Modbus ゲートウェイユニット

目 次

安全にお使いいただく為に	
【安全上の記号と表示】	·····i
【ご注意事項】	
LC/L版字录/	"
はじめに	
1)概要	······································
2) 製品型式体系	······2
3) システム構成例	3
第1章 一般仕様	
1-1 電気仕様	
1-2 環境仕様及び質量	
1一3 EtherCAT 通信仕様····································	1-2
1—4 Modbus インタフェース部仕様	······1—2
1一5 梱包内容	······1—2
第2章 各部の名称	
2一1 正面	······································
- · 	
第 3 章 EtherCAT 通信	
第3章 Eurier GAT 通信	
3-1 概要	······3—1
3-2 設定	·····3—1
3一3 通信仕様	3-2
3-3-1 デバイスモデル	3-2
3-3-2 通信	3-3
3-3-3 通信タイミング	3-6
3-3-4 EtherCAT State Machine	·····3 - 7
3ー4 オブジェクトディクショナリへのアクセス	
3ー4ー1 プロセスデータオブジェクト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

3-4	File A	ccess (over Ethe	CAT (FoF')	} — 1	n

第 4 章 オブジェクトディクショナリ

4-1 概要	4—1
4ー1ー1 オブジェクトディクショナリ構成	·····4-1
4-1-2 データタイプエリア・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·····4-1
4-2 CoE コミュニケーションエリア	4-3
4ー2ー1 デバイスオブジェクト詳細	4-5
4-3 プロファイルエリア	4-9
4ー3ー1 ターゲット機器 設定パラメータ	4—10
4-3-2 COM ポート 設定パラメータ	4—11
4ー3ー3 モニタデータコマンド 設定パラメータ	4—13
4ー3ー4 即時要求データコマンド 設定パラメータ	······4—14
4ー3ー5 手動要求データコマンド 設定パラメータ	4—15
4-3-6 モニタデータコマンド エラーステータス	·····4—17
4ー3ー7 即時要求データコマンド エラーステータス	4—19
4-3-8 手動要求データコマンド エラーステータス	·····4—21
4ー3ー9 即時要求データコマンド レスポンス	······4—23
4-3-10 手動要求データコマンド レスポンス	4-25
4-3-11 入力データエリア	······4-27
4-3-12 エラー状況エリア	4-29
4-3-13 レスポンス状況エリア	4-30
4-3-14 出力データエリア	4 - 31
4-4 Modbus プロトコルの概要·······	······4—33
4-4-1 メッセージフレーム	4-33
4ー4ー2 メッセージフレームの内容	·····4-33
4-5 Modbus 通信までの手順	······4—34
4-6 エラーチェックの手順	······4—35
4-7 手動要求データコマンドの実行手順	······4—36

第5章設置

5-1 取付け場所	<u>-</u> 1	
5-2 DIN レールによる取付け5	-2	

5-3 ねじによる取付け5-4	
5-4 配線に関する注意事項	
第6章 接続	
6一1 EtherCAT 接続····································	
6-2 RS-232C6-2	
6-3 RS-422/4856-3	
第7章トラブルシューティング	
7-1 トラブルシュ ー ティング·······7-1	

8−1 ECEB002 ∕ ECEB003········8−1	
8—1 ECEB002/ ECEB003···································	
第9章 別売品	
第 9 章 別売品	
9-1 コネクタ9-1	
9-1 コネクタ 9-1-1 1 電源コネクタ 9-1-1	
9-1 コネクタ9-1	
9-1 コネクタ 9-1 9-1-1 電源コネクタ 9-1 9-1-2 e-CON コネクタ 9-1	
9-1 コネクタ 9-1-1 1 電源コネクタ 9-1-1	
9-1 コネクタ 9-1 9-1-1 電源コネクタ 9-1 9-1-2 e-CON コネクタ 9-1	
9-1 コネクタ····································	
9-1 コネクタ 9-1 9-1-1 電源コネクタ 9-1 9-1-2 e-CON コネクタ 9-1 第 10 章 製品保証内容 10-1 無償保証について 10-1	
9-1 コネクタ 9-1 9-1-1 電源コネクタ 9-1 9-1-2 e-CON コネクタ 9-1 第 10 章 製品保証内容 10-1 無償保証について 10-1-1 無償保証期間 10-1	
9-1 コネクタ 9-1 9-1-1 電源コネクタ 9-1 9-1-2 e-CON コネクタ 9-1 第 10 章 製品保証内容 10-1 10-1 無償保証期間 10-1 10-1-2 無償保証範囲 10-1	
9-1 コネクタ 9-1 9-1-1 電源コネクタ 9-1 9-1-2 e-CON コネクタ 9-1 第 10 章 製品保証内容 10-1 10-1 無償保証について 10-1 10-1-2 無償保証範囲 10-1 10-1-3 有償保証について 10-1	
9-1 コネクタ 9-1 9-1-1 電源コネクタ 9-1 9-1-2 e-CON コネクタ 9-1 第 10 章 製品保証内容 10-1 10-1 無償保証問間 10-1 10-1-2 無償保証範囲 10-1 10-1-3 有償保証について 10-1 10-2 修理について 10-1	

安全にお使いいただく為に

本製品を安全かつ正しく使用していただく為に、お使いになる前に本書をお読みいただき、十分に理解していただくようお願い申し上げます。

【安全上の記号と表示】

本書では、本製品を安全に使用していただく為に、注意事項を次のような表示と記号で示しています。これらは、安全に関する重大な内容を記載しておりますので、よくお読みの上、必ずお守りください。

誤った取扱いをすると、死亡又は重傷を負う可能性が想定される場合を示します。

警告

- 本製品をご使用になられる前に必ず本書をよくお読みいただいた上で、ご使用ください。
- 本製品の設置や接続は、電気的知識のある技術者が行ってください。設置や交換作業の前には必ず本製品の電源をお切りください。
- 本製品は本書に定められた仕様や条件の範囲内でご使用ください。
- 異常が発生した場合は、直ちに電源を切り、原因を取除いた上で、再度電源を投入してください。
- 故障や通信異常が発生した場合に備えて、お客様でフェールセーフ対策を施してください。
- 本製品は原子力及び放射線関連機器、鉄道施設、航空機器、船舶機器、航空施設、医療機器などの人身に直接関わるような状況下で使用される事を目的として設計、製造されたものではありません。人身に直接関わる安全性を要求されるシステムに適用する場合には、お客様の責任において、本製品以外の機器・装置をもって人身に対する安全性を確保するシステムの構築をしてください。

i

■ 電源に許容範囲以上の電圧を印加しないでください。印加すると内部が破損するおそれがあります。

- 電源ケーブルは誤動作防止のため、必ず最後に配線し電源を投入してください。
- 本製品の導電部分には直接触らないでください。製品の誤動作、故障の原因になります。
- 本製品を可燃性ガスのあるところでは使用しないでください。爆発のおそれがあります。
- 制御線や通信ケーブルは動力線、高圧線と一緒に配線しないでください。10cm 以上を目安として離して配線してください。
- 本製品内に切粉や金属片等の異物が入らないようにしてください。
- 本製品は分解、修理、改造を行なわないでください。
- 氷結、結露、粉塵、腐食性ガスなどがある所、油、薬品などがかかる所では使用しないでください。製品の損傷、誤動作の原因となります。
- 入力端子には規定の電圧を入力してください。製品の損傷、誤動作の原因となります。
- 取付けねじは規定のトルクで締付けを行ってください。締付けがゆるいと本製品の脱落による破損や防滴効果が得られないおそれがあります。締付けが強すぎると取付け部の破損のおそれがあります。
- 端子ねじは規定のトルクで締付けを行ってください。締付けがゆるいと抜けやすくなり、接触不良や誤動作、 感電のおそれがあります。

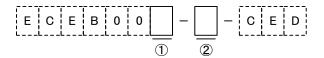
【ご注意事項】

EU 指令適合品としてご使用の場合

- 本製品は、各種制御盤、製造装置に組み込まれて使用される前提の電気機器であるため、必ず導電性の制御 盤内に設置してください。
- お客様の装置に実際に組み込んだ際に、規格を満足させるために必要な対策は、制御盤の構成、配置状態、配 線状態によって変化します。従って機械装置等に CE マークを表示させるためには、使用されるお客様自身がそ の適合性を確認した上で CE マークを表示する必要があります。

はじめに

1) 概要

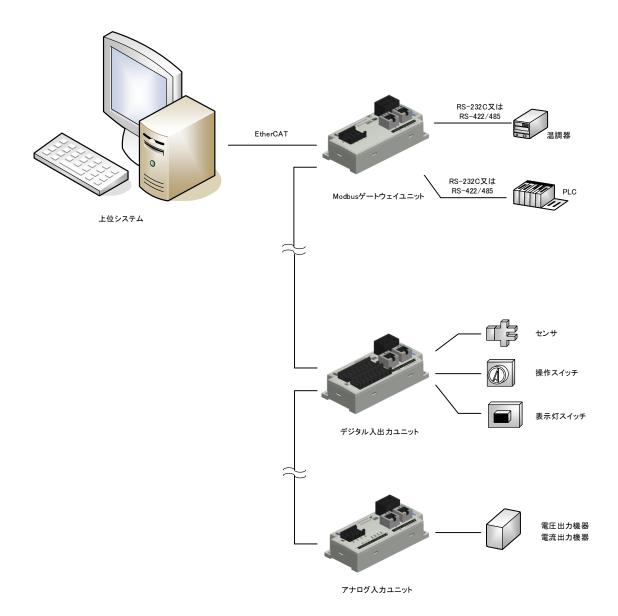

本製品は EtherCAT ネットワークを用いて複数のターゲット機器との Modbus 通信を実現するゲートウェイユニットです。

本マニュアルは「ECEB00x-4-CED」(バージョン 4)以降の製品について説明しています。 本製品の特長を以下に示します。

- CPU はルネサスエレクトロニクス製 R-IN32M3-EC を搭載
- EtherCAT Sub Device Controller は CPU 内蔵 Beckhoff 社製 EtherCAT Controller IP Core を使用
- シリアルインタフェースを 4CH 搭載
- RS-232C タイプ、RS-422/485(全二重、半二重切替可能)タイプをラインアップ
- シリアル伝送モードは RTU モードと ASCII モードに対応
- チェックアルゴリズムは RTU モードでは CRC 法を、ASCII モードでは LRC 法を採用
- 電源は DC24V
- CE マーキング適合

* EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

2) 製品型式体系


一	2	:RS-232C 仕様
1上作来	3	:RS-422/485 仕様

2	バージョン	:バージョン「4」以降(4~9, A~Z)

名 称	型式
Modbus ゲートウェイユニット RS-232	ECEB002-□-CED
Modbus ゲートウェイユニット RS-422/485	ECEB003-□-CED

- ※ □はバージョンを表します。
- ※ 型式末尾の「CED」は CE マーキング適合製品のシリーズ名です。
- ※「ECEB00x -1~3」(バージョン3まで)の製品については営業担当までお問合せください。

3) システム構成例

EtherCAT シリーズ 第 1 章 一般仕様

第1章 一般仕様

本章では、本製品の電気的仕様及び性能を一覧表形式で説明します。

1-1 電気仕様

	項 目	仕 様
	定格電圧	DC24V
電源	電圧許容範囲	DC20.4~26.4V
电源	内部消費電流(※1)	130mA 以下
	ステータス LED(PWR)	グリーン
供給電流	SIO コネクタ	コネクタあたり最大 100mA
供給電圧	310 34.93	3.3V

⁻(※1) 記載の消費電流値は外部入力電流、外部出力電流を含まない値です。

1-2 環境仕様及び質量

	項目	仕 様
	使用周囲温度	−10 ~ 60°C
	保存周囲温度	−25 ~ 70°C
	使用周囲湿度	10~90%RH(結露無きこと)
	保存周囲湿度	10~90%RH(結露無きこと)
	使用雰囲気	腐食性ガス無きこと
物理的環境	耐気圧(使用高度)	800~1114hPa(海抜 2000m 以下)
		JIS B3502、IEC/EN61131-2 準拠
	一 一耐振動	5~9Hz 片振幅 3.5mm
	[iii] 1)K 至J	9~150Hz 定加速度 9.8m/s ²
		X、Y、Z 各方向 10 サイクル(100 分間)
	耐衝擊	98m/s² X, Y, Z 各方向 3 回
	耐インパルスノイズ(電源間)	ノイズ電圧±1kV、ノイズ幅 1μs、
	(ノイズシミュレータによる)(※2)	立上がり 1ns、繰返し周波数 16ms
	コー・フレレニンパーンルパーフレ	IEC61000-4-4(レベル3)
	ファーストトランジェントバースト (※2)	電源ライン±2kV
		信号ライン±1kV
 電気的条件		IEC61000-4-2(レベル3)
电がが木汁	耐静電気放電(※2)	±6kV(接触放電法)
		±8kV(気中放電法)
	纵结忙 ₩	充電部端子とI/O 一括⇔FG 間
	絶縁抵抗	DC500V 絶縁抵抗計にて 10MΩ以上
	耐電圧	充電部端子とI/O 一括⇔FG 間
	川) 电江	AC1000V 1 分間
外形寸法(※3)		56 × 120 × 27.3
質量		約 110g

^(※2) USB は対象外です。

^(※3) 突起部は含みません。(W)×(H)×(D)表記(単位:mm)

EtherCAT シリーズ第1章 一般仕様

1-3 EtherCAT 通信仕様

項目	仕 様		
通信プロトコル	EtherCAT PDO、SDO		
対応プロファイル	CoE、FoE		
通信制御 IC	R-IN32M3-EC(ルネサスエレクトロニクス製)		
EtherCAT PHY	R-IN32M3-EC(ルネサスエレクトロニクス製)に内蔵		
通信方式	IEEE802.3u (100Base-TX)		
絶縁方式	パルストランス絶縁		
ステータス LED	RUN(グリーン)、ERR(レッド)		
λ) −3λ LED	L/A IN(グリーン)、L/A OUT(グリーン)		
外部インタフェース	RJ-45×2		

1-4 Modbus インタフェース部仕様

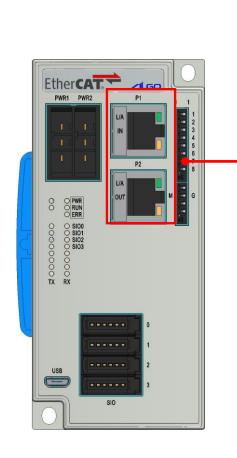
項目	仕	様	
型式	ECEB002	ECEB003	
通信	EIA 規格 RS-232C 4CH	EIA 規格 RS-422/485 4CH	
制御信号	無し	無し	
終端抵抗	無し	無し	
外部インタフェース	e-CON 6ピン		
適合コネクタ(※4)	1473562-6(タイコ エレクトロニクス製)		

^(※4) 別売品として購入可能です。詳細は「第9章 別売品」を参照してください。

項目	機能	パラメータ	初期値
Modbus ターゲット機器	最大接続台数	8 台	_
Modbus ターケット版品	対応伝送モード	RTU / ASCII	_
モニタデータ	最大データ登録 Byte 数	256Byte	_
==31-3	最大コマンド登録件数	32	_
即時要求データ	最大データ登録 Byte 数	256Byte	-
即时安水了一岁	最大コマンド登録件数	32	-
手動要求データ	最大データ登録 Byte 数	256Byte (即時要求データと共有)	_
	最大コマンド登録件数	8	_
	ポート数	4CH	-
		1200bps/2400bps/4800bps/	
	ボーレート	9600bps/19200bps/38400bps/	9600bps
シリアル通信設定		57600bps/115200bps	
	データ長	7bit/8bit	8bit
	ストップビット	1bit/2bit	1bit
	パリティ	なし / 偶数 / 奇数	なし

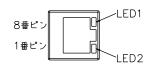
1-5 梱包内容

名 称	員数	備考
本体	1 台	
取扱説明書	1 枚	A4 サイズ


[※] 電源コネクタ、I/O コネクタは付属していません。

第2章 各部の名称

本章では、各部の名称と意味を説明します。


- コネクタ・ケーブル類はお客様にてご準備ください。
- コネクタ(別売品)については「第9章 別売品」を参照してください。

2-1 正面

EtherCAT 通信コネクタ (P1, P2)

IEEE802.3u(100Base-TX)

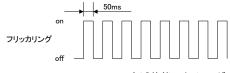
8	NC
7	NC
6	RXD-
5	NC
4	NC
3	RXD+
2	TXD-
1	TXD+

LED1 :L/A IN L/A OUT(グリーン)

-	-,		
	1 / 4	P1 IN コネクタで LINK 確立後動作中 P1 IN コネクタで物理層 LINK 確立時 P1 IN コネクタで物理層 LINK 未確立時	:フリッカリング
	IN	P1 IN コネクタで物理層 LINK 確立時	:点灯
	IIN	P1 IN コネクタで物理層 LINK 未確立時	:消灯
	1 / 4	P2 OUT コネクタで LINK 確立後動作中 P2 OUT コネクタで物理層 LINK 確立時 P2 OUT コネクタで物理層 LINK 未確立時	:フリッカリング
	OUT	P2 OUT コネクタで物理層 LINK 確立時	:点灯
	001	P2 OUT コネクタで物理層 LINK 未確立時	:消灯

LED2 :未使用

適合コネクタ : RJ-45 コネクタ

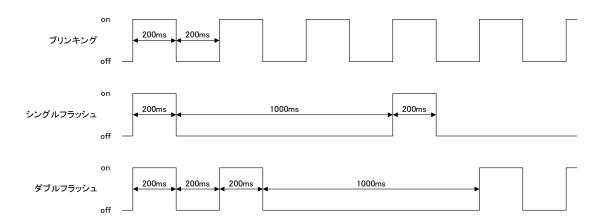

適合電線 :アルミテープ+編組の二重シールドケーブル

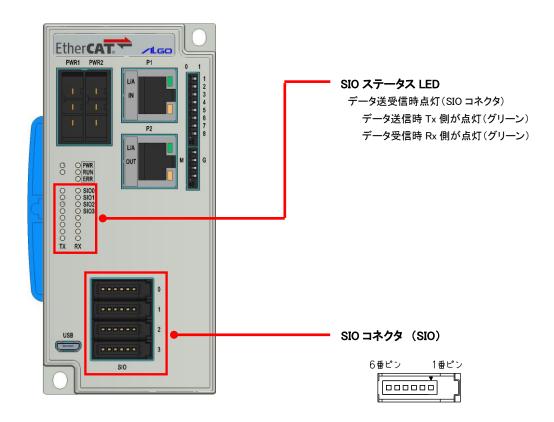
(カテゴリ 5e 以上)


推奨コネクタ :J00026A2001(テレガートナー製) 推奨ケーブル :IETP26-SB(日本電線工業製)

※ 通信ケーブルとコネクタを接続する場合は、ストレート配線を 行ってください

接続については「第6章 接続」を参照してください

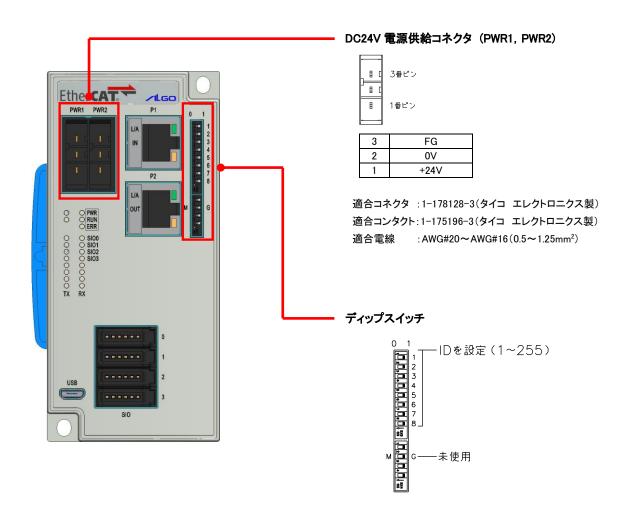

LED 点滅状態のタイミング

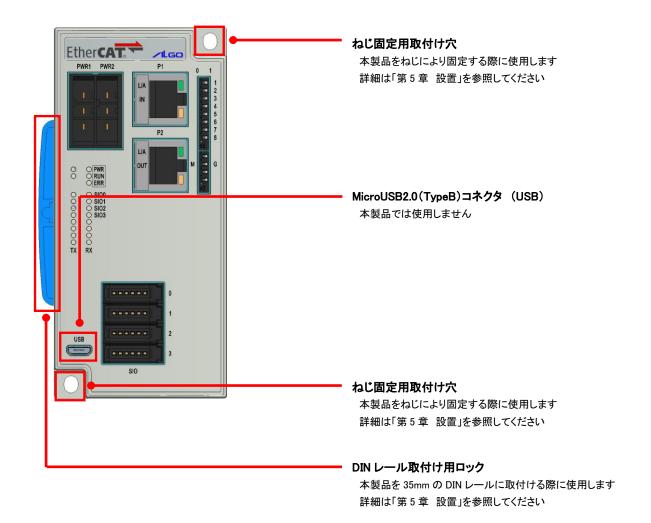

- 電源・通信 ステータス LED

PWR (グリーン)	電源 ON 時	:点灯
RUN (グリーン)	オペレーショナル時 セーフオペレーショナル時 プレオペレーショナル時 初期化状態時	: 点灯 : シングルフラッシュ : ブリンキング : 消灯
ERR (レッド)	アプリケーションウォッチドック タイムアウト時 同期異常、通信データ異常時 通信設定異常時 異常なし	: ダブルフラッシュ : シングルフラッシュ : ブリンキング : 消灯

※ 電源電圧が DC17V±1V 以上で点灯します

LED 点滅状態のタイミング




	ECES000	ECES001
1	TXD	RXD+(TR+)
2	RXD	RXD-(TR-)
3	CTS	TXD+
4	RTS	TXD-
5	+3.3V	+3.3V
6	GND	GND

適合コネクタ:1473562-6(タイコ エレクトロニクス製)

適合電線 :被覆外形 φ 1.0~1.15

接続については「第6章 接続」を参照してください

EtherCAT シリーズ 第 3 章 EtherCAT 通信

第3章 EtherCAT 通信

この章では、EtherCAT ネットワーク通信の構築方法、物理的なパラメータの調整方法、各種機能をアクティブにする方法の技術的な仕様が記述されています。

お読みいただく方は、ネットワーク、EtherCAT CoE(CANopen over EtherCAT)の基本的な知識を持つことを前提とします。 EtherCAT Specification の詳細については、EtherCAT Technology Group から入手できます。 EtherCAT 仕様を参照いただ くようにお願いします。

3-1 概要

EtherCAT(Ethernet Control Automation Technology)は、Beckhoff 社により開発され、現在では EtherCAT Technology Group(ETG)により管理されています。

EtherCAT 接続は、新しいリアルタイム Ethernet を用いたネットワーク通信で、ツイストペア、または光ファイバケーブルで接続ができるとともに、ライン、ツリー、デイジーチェーン、ドロップラインをサポートします。

EtherCAT 転送方法はメインデバイスから送信されたフレームがサブデバイス通過時に出力データを取り出し、入力データを挿入します。EtherCAT プロトコルは、IEEE802.3 に準拠した標準の Ethernet プロトコルが維持されていますので、新たにサブバスの構築は必要ありません。

EtherCAT プロトコルはプロセス・データ向けに最適化されています。EtherType により Ethernet フレーム内で直接転送されます。いくつかのサブ・テレグラムを構成しているかもしれませんが、それぞれ 4GB 容量までのロジック・プロセス・イメージを特定のメモリ・エリアに提供します。

* EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

3-2 設定

ノード ID

EtherCAT ネットワーク内の各サブデバイスドライブは、それぞれ固有のノード ID を持つことができます。また、ノード ID とは別に、DipSW1 で 8Bit サブデバイスアドレス 1~255 を設定することができます。

設定値は、電源投入時に、ステーションエイリアス設定レジスタ(0x0012)に書き込まれます。

アドレスを変更する場合は、設定を変更後、ユニットの再起動が必要になります。

尚、ノード ID の設定は、EtherCAT メインデバイスによって取り扱いが異なりますので注意してください。

EtherCAT シリーズ 第3章 EtherCAT 通信

3-3 通信仕様

3-3-1 デバイスモデル

- Communication
 - この機能のユニットは、ネットワーク構造ベース経由でデータ転送するための機能が含まれます。
- Object Dictionary オブジェクトディクショナリは、アプリケーションオブジェクト、通信オブジェクトと、このデバイスで使用するステートマシーンの動作に影響を与えるものです。
- Application アプリケーションは、動作環境に応じたデータ交換する項目の通信デバイス機能が含まれます。

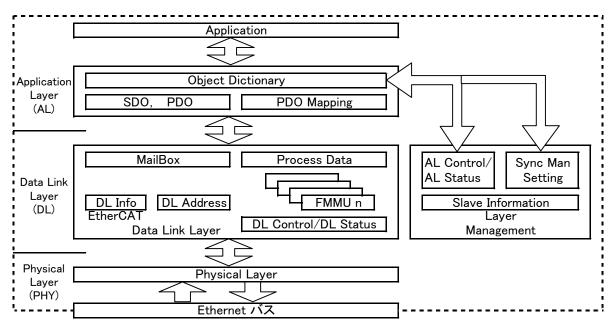


図 3-3-1-1 オブジェクトディクショナリとデバイスモデル

■ Object Index

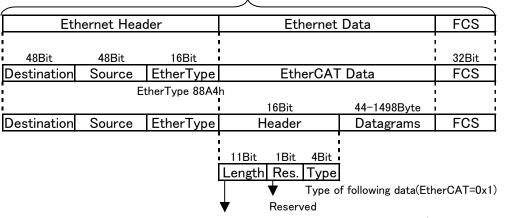
すべてのオブジェクトは、16Bit のインデックスでアドレスされます。オブジェクトは、グループ毎にオブジェクトディクショナリ内に配置されます。

CoE にて規定されるオブジェクトディクショナリ概要を以下に示します。

Index	オブジェクト	
0x0000~0x0FFF	Data Type Area(データタイプエリア)	
0x1000~0x1FFF	Communication Profile Area(CoE コミュニケーションエリア)	
0x2000~0x5FFF	Manufacturer Specific Profile Area(メーカースペックエリア)	
0x6000~0x9FFF	Standardized Device Profile Area(プロファイルエリア)	
0xA000~OxFFFF	Reserved	

表 3-3-1-1 オブジェクトディクショナリ構成

EtherCAT シリーズ 第 3 章 EtherCAT 通信


3-3-2 通信

■ EtherCAT プロトコル

EtherCAT は、IEEE802.3 スタンダードの Ethernet フレームを使用しているため、標準ネットワークコントローラを使用することができます。メインデバイス側は特別なハードウェアを必要としません。

EtherCAT は、EtherType=0x88A4 が準備されており、他の Ethernet フレームと区別されます。 そして、EtherCAT は IP プロトコルを必要としません。

Ethernet Frame: Max. 1514 Byte

Length of following EtherCAT datagrams(not checked by slave)

図 3-3-2-1 Ethenet Frame 上の EtherCAT Data

■ EtherCAT Datagram

ネットワーク構築を容易にするために、デフォルトとして命令コマンドは IEC61158 EtherCAT コミュニケーションプロファイルで標準化されています。セグメント内の各ノードは、個別にアドレスされ、1 つの Ethernet により EtherCAT Datagram を使用することが可能です。フレームは、最終 EtherCAT Datagram で終了します。

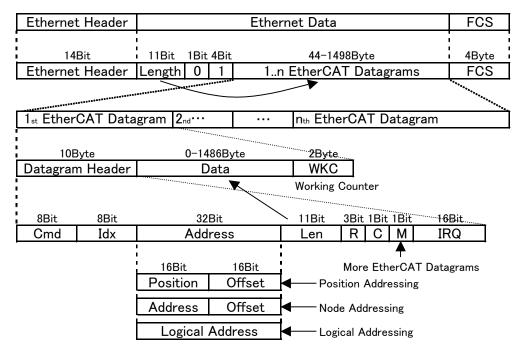


図 3-3-2-2 EtherCAT Datagram

EtherCAT シリーズ 第3章 EtherCAT 通信

表 3-3-2-1 Datagram ヘッダー

フィールド	データタイプ	内容	
Cmd	BYTE	EtherCAT コマンドタイプ	
Idx	BYTE	インデックス番号	
Address	BYTE[4]	32Bit サブデバイスアドレス	
		・オートインクリメントアドレス(16Bit デバイスアドレス+16Bit オフセットアドレス)	
		・ノードアドレス(16Bit デバイス + 16Bit オフセットアドレス)	
		・ロジカルアドレス(32Bit ロジカルアドレス)	
Len	11Bit	Datagrams のデータ長	
R	3Bit	Reserved	
С	1Bit	循環フレーム 0:フレームは循環していない	
		1:フレームは以前循環した	
М	1Bit	継続 Datagram 0: 最後の Datagram	
		1:後ろに Datagram が続く	
IRQ	WORD	EtherCAT 割り込みリクエスト・レジスタ	
Data	BYTE[n]	リード/ライトデータ	
WKC	WORD	ワーキングカウンタ	

■ EtherCAT M・モード

EtherCAT デバイスはデバイスアドレッシングと論理的なアドレッシングの 2 つのアドレッシング・モードがサポートされます。

デバイスアドレッシング・モードではオートインクリメントアドレッシング、コンフィグステーションアドレッシング、およびブロードキャストの3つが利用可能です。

EtherCAT アドレッシング・モードの説明を表 3-3-2-2 に示します。

表 3-3-2-2 EtherCAT アドレッシング・モード

モード	フィールド	データタイプ	内容
Auto	Position	WORD	各サブデバイスは位置をインクリメントし、Position=0 のサブデバイスがアドレスさ
Increment			れます。
Address	Offset	WORD	ESC のローカルレジスタ、またはメモリアドレス。
Configured	Address	WORD	設定されたステーションアドレスとステーションエイリアスが一致した場合にサブデ
Station			バイスはアドレスされます。
Address	Offset	WORD	ESC のローカルレジスタ、またはメモリアドレス。
BloadCast	Position	WORD	各サブデバイスは位置をインクリメントされます。
	Offset	WORD	ESC のローカルレジスタ、またはメモリアドレス。
Logical	Address	DWORD	FMMU にて設定された論理アドレスが FMMU 設定と一致した場合にサブデバイス
Address			はアドレスされます。

EtherCAT シリーズ 第3章 EtherCAT 通信

■ ワーキングカウンタ

EtherCAT Datagram は、16Bit のワーキングカウンタ(WKC)を持ちます。ワーキングカウンタは、EtherCAT Datagram によって正常にアクセスされたデバイス番号をカウントします。 コマンドとワーキングカウンタの対応表を表 3-3-2-3 に示します。

表 3-3-2-3 コマンドとワーキングカウンタ

コマンド	内容	インクリメント
リードコマンド	失敗	変更なし
	リード成功	+1
ライトコマンド	失敗	変更なし
	ライト成功	+1
リード・ライトコマンド	失敗	変更なし
	リード成功	+1
	ライト成功	+2
	リード・ライト成功	+3

■ EtherCAT コマンドタイプ コマンドタイプリストを表 3-3-2-4 に示します。

表 3-3-2-4 コマンドタイプリスト

コマンド	略語	名前	説明
0(0x00)	NOP	No Operation	コマンド無視
1(0x01)	APRD	Auto Increment Read	アドレスをインクリメントし、受信アドレス=0の時、Datagramにリードデータをセット。
2(0x02)	APWR	Auto Increment Write	アドレスをインクリメントし、受信アドレス=0 の時、メモリ領域に データをライト。
3(0x03)	APRW	Auto Increment ReadWrite	アドレスをインクリメントし、受信アドレス=0の時、Datagramにリードデータをセットし、メモリ領域にデータをライト。
4(0x04)	FPRD	Configured Address Read	アドレス一致の時、Datagram にリードデータをセット。
5(0x05)	FPWR	Configured Address Write	アドレス一致の時、メモリ領域にデータをライト。
6(0x06)	FPRW	Configured Address ReadWrite	アドレス一致の時、Datagram にリードデータをセットし、メモリ領域にデータをライト。
7(0x07)	BRD	Broadcast Read	全サブデバイス、メモリ領域データと Datagram データの論理和をセット。
8(0x08)	BWR	Broadcast Write	全サブデバイス、メモリ領域にデータをセット。
9(0x09)	BRW	Broadcast ReadWrite	全サブデバイス、メモリ領域データと Datagram データの論理和 をセットし、メモリ領域にデータをセット。(通常、BWR コマンドは 使用しない)
10(0x0A)	LRD	Logical Memory Read	受信アドレスがリード設定 FMMU と一致の時、Datagram にリードデータをセット。
11(0x0B)	LWR	Logical Memory Write	受信アドレスがリード設定 FMMU と一致の時、メモリ領域にデータをライト。
12(0x0C)	LRW	Logical Memory ReadWrite	受信アドレスがリード設定 FMMU と一致の時、Datagram にリードデータをセットし、メモリ領域にデータをライト。
13(0x0D)	ARWW	Auto Increment Read Multiple Write	アドレスをインクリメントし、受信アドレス=0の時、Datagramにリードデータをセット。他のサブデバイスはメモリ領域にデータをライト。
14(0x0E)	FRWW	Configured Read Multiple Write	アドレス一致の時、Datagram にリードデータをセット。他のサブ デバイスはメモリ領域にデータをライト。
	15~255(0x0F~0xF	F)	Reserved

EtherCAT シリーズ 第 3 章 EtherCAT 通信

3-3-3 通信タイミング

EtherCAT 同期ハンドリングは、メインデバイスとサブデバイス内の EtherCAT デバイスにより独立して動作します。 同期モードは、以下の通信方式を使用できます。

1) フリーランモード サブデバイスアプリケーションは、EtherCAT 同期信号とは非同期で動作します。 EtherCAT シリーズ 第3章 EtherCAT 通信

3-3-4 EtherCAT State Machine

EtherCAT State Machine(ESM)はメインデバイスとサブデバイスアプリケーションの始動開始時の状態を決定します。 状態の変更は、メインデバイスからの要求で行います。

メインデバイスはサブデバイスの AL コントロールレジスタに変更したい ESM を書き込み、変更要求をかけます。サブデバイスはローカルの AL ステータスで、ステートが変更されたかを確認し応答します。もし、要求が失敗した場合は、サブデバイスはエラーフラグにより応答します。

EtherCAT サブデバイスがサポートする 4 つのステートを以下に示します。

•Init (イニット)

・Pre-Operational (プリオペレーショナル)
・Safe-Operational (セーフオペレーショナル)

・Operational (オペレーショナル)

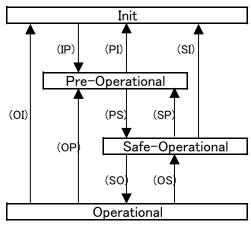


図 3-3-4-1 EtherCAT State Machine

表 3-3-4-1 State 遷移とローカルマネージメントサービス

State/State Change	図中記号	サービス
INIT	Init	メインデバイスはサブデバイスコンフィギュレーションレジスタへの初期設定のために本
		State を使用します。メールボックスサービスの SyncManager 設定も本 State で行います。
INIT TO PREOP	ΙP	メールボックスコミュニケーション開始
PREOP TO INIT	PI	メールボックスコミュニケーション停止
SAFEOP TO INIT	SI	Input 更新停止、メールボックスコミュニケーション停止
OP TO INIT	OI	Input/Output 更新停止、メールボックスコミュニケーション停止
PREOP	Pre-Operational	サブデバイスが MailBox をサポートする場合、MailBox 通信が行えます。
		メインデバイスとサブデバイスは、アプリケーションスペックの初期化とパラメータ変更のた
		めに、MailBox を使用できます。
PREOP TO SAFEOP	PS	Input 更新開始
SAFEOP TO PREOP	SP	Input 更新停止
OP TO PREOP	OP	Input/Output 更新停止
SAFEOP	Safe-Operational	プロセスデータ通信が行えます。
		ただし、入力データのみのやりとりです。出力データは本 State では転送しません。
SAFEOP TO OP	SO	Output 更新開始
OP TO SAFEOP	OS	Output 更新停止
OP	Oparational	プロセスデータ通信が行えます。
		入力データ、出力データの転送を行います。

EtherCAT シリーズ 第3章 EtherCAT 通信

3-4 オブジェクトディクショナリへのアクセス

EtherCAT Modbus ゲートウェイは、CoE(CAN application protocol over EtherCAT)をサポートしており、デバイスオブジェクトディクショナリへは、プロセスデータオブジェクト(PDO)でアクセスします。

3-4-1 プロセスデータオブジェクト

■ 概要

EtherCAT のリアルタイム転送は「プロセスデータオブジェクト(PDO)」を用いて行います。

PDO 転送は、プロトコル転送処理のオーバーヘッドを必要としません。

使用する PDO は、メインデバイスからサブデバイスへ RxPDO(受信 PDO)、サブデバイスからメインデバイスへ TxPDO(送信 PDO)が用意されています。

■ PDO マッピング

EtherCAT Modbus ゲートウェイでは事前に PDO オブジェクト割付けがなされており、ユーザは割り付けられている PDO に対してアクセスすることでユニットにアクセスすることができます。

ユニットに用意されている PDO はすべてマッピングしていますので、ユーザが PDO マッピングの変更を行う必要はありません。

以下に EtherCAT Modbus ゲートウェイの PDO マッピングを示します。

表 3-4-1-1 EtherCAT Modbus ゲートウェイ RxPDO メモリマッピング

Index	名称	機能		
0x1600	受信 PDO マッピング 1	RxPDO1 マッピングオブジェクトディクショナリのエントリー		ョナリのエントリーです。
Sub-Index	機能	Data Type Dir PDO		PDO map
0x00	エントリー数	UINT8	RO	No
0x01	出力データエリア 0x7000のデータ(1)	UINT32	RO	No
1	1	↓	1	1
0x40	出力データエリア 0x703F のデータ(64)	UINT32	RO	No

Index	名称		機能	
0x1601	受信 PDO マッピング 2	RxPDO2 マッピングオブジェクトディクショナリのエントリー		ョナリのエントリーです。
Sub-Index	機能	Data Type Dir PDO		PDO map
0x00	エントリー数	UINT8	RO	No
0x01	出力データエリア 0x7040のデータ(65)	UINT32	RO	No
1	<u> </u>	↓	1	1
0x40	出力データエリア 0x707F のデータ(128)	UINT32	RO	No

Index	名称		機能	
0x1602	受信 PDO マッピング 3	RxPDO3 マッピングオブジェクトディクショナリのエントリー		ョナリのエントリーです。
Sub-Index	機能	Data Type Dir PD		PDO map
0x00	エントリー数	UINT8	RO	No
0x01	出力データエリア 0x7080のデータ(129)	UINT32	RO	No
1	\downarrow	↓	1	1
0x40	出力データエリア 0x70BF のデータ(192)	UINT32	RO	No

Index	名称		機能	
0x1603	受信 PDO マッピング 4	RxPDO4 マッピングオブジェクトディクショナリのエントリ		ョナリのエントリーです。
Sub-Index	機能	機能 Data Type Dir		PDO map
0x00	エントリー数	UINT8	RO	No
0x01	出力データエリア 0x70C0のデータ(193)	UINT32	RO	No
1	\	↓	1	1
0x40	出力データエリア 0x70FF のデータ(256)	UINT32	RO	No

表 3-4-1-2 EtherCAT Modbus ゲートウェイ TxPDO メモリマッピング

	20 ,	1 / - 1 1/11		
Index	名称	機能		
0x1A00	送信 PDO マッピング 1	TxPDO1 マッピングオブジェクトディクショナリのエントリ		ョナリのエントリーです。
Sub-Index	機能	Data Type Dir PDC		PDO map
0x00	エントリー数	UINT8 RO		No
0x01	入力データエリア 0x6000のデータ(1)	UINT32 RO		No
1	\	1 1		\downarrow
0x40	入力データエリア 0x603Fのデータ(64)	UINT32	RO	No

Index	名称		機能	
0x1A01	送信 PDO マッピング 2	TxPDO2 マッピングオブジェクトディクショナリのエントリー		ョナリのエントリーです。
Sub-Index	機能	Data Type Dir PDO r		PDO map
0x00	エントリー数	UINT8	RO	No
0x01	入力データエリア 0x6040のデータ(65)	UINT32	RO	No
↓	\	↓	1	↓
0x40	入力データエリア 0x607Fのデータ(128)	UINT32	RO	No

Index	名称	機能		
0x1A02	送信 PDO マッピング 3	TxPDO3 マッピングオブジェクトディクショナリのエントリー		ョナリのエントリーです。
Sub-Index	機能	Data Type Dir PDO m		PDO map
0x00	エントリー数	UINT8	RO	No
0x01	入力データエリア 0x6080のデータ(129)	UINT32	RO	No
1	1	↓	1	1
0x40	入力データエリア 0x60BFのデータ(192)	UINT32	RO	No

Index	名称	機能		
0x1A03	送信 PDO マッピング 4	TxPDO4 マッピングオブジェクトディクショナリのエントリーで		ョナリのエントリーです。
Sub-Index	機能	Data Type Dir PDO		PDO map
0x00	エントリー数	UINT8	RO	No
0x01	入力データエリア 0x60C0のデータ(193)	UINT32	RO	No
1	<u> </u>	↓	1	↓
0x40	入力データエリア 0x60FFのデータ(256)	UINT32	RO	No

EtherCAT シリーズ 第3章 EtherCAT 通信

Index	名称		機能	
0x1A10	送信 PDO マッピング 17	TxPDO17 マッピ: ーです。	ングオブジェクト・	ディクショナリのエントリ
Sub-Index	機能	Data Type	Dir	PDO map
0x00	エントリー数	UINT8	RO	No
0x01	エラー状況(0x6800:01)	UINT32	RO	No
0x02	エラー状況 (0x6800:02)	UINT32	RO	No
0x03	エラー状況 (0x6800:03)	UINT32	RO	No
0x04	エラー状況 (0x6800:04)	UINT32	RO	No
0x05	エラー状況 (0x6800:05)	UINT32	RO	No
0x06	エラー状況 (0x6800:06)	UINT32	RO	No
0x07	エラー状況(0x6800:07)	UINT32	RO	No
0x08	エラー状況 (0x6800:08)	UINT32	RO	No
0x09	エラー状況(0x6800:09)	UINT32	RO	No

Index	名称		機能	
0x1A11	送信 PDO マッピング 18	TxPDO18 マッピ: 一です。	ングオブジェクト・	ディクショナリのエントリ
Sub-Index	機能	Data Type	Dir	PDO map
0x00	エントリー数	UINT8	RO	No
0x01	レスポンス状況 (0x6900:01)	UINT32	RO	No
0x02	レスポンス状況 (0x6900:02)	UINT32	RO	No
0x03	レスポンス状況 (0x6900:03)	UINT32	RO	No
0x04	レスポンス状況 (0x6900:04)	UINT32	RO	No
0x05	レスポンス状況 (0x6900:05)	UINT32	RO	No
0x06	レスポンス状況 (0x6900:06)	UINT32	RO	No
0x07	レスポンス状況 (0x6900:07)	UINT32	RO	No
0x08	レスポンス状況 (0x6900:08)	UINT32	RO	No
0x09	レスポンス状況 (0x6900:09)	UINT32	RO	No

3-4 File Access over EtherCAT(FoE)

EtherCAT Modbus ゲートウェイユニットは、FoE(File Access over EtherCAT)をサポートしており、ファームウェアファイルをユニットにダウンロードできます。

拡張子が efw(EtherCAT Firmware File)のファイルを EtherCAT メインデバイスの FoE 機能でダウンロードすることが可能です。

ダウンロードに必要なパスワードは設定なし(0x00000000)です。

第4章 オブジェクトディクショナリ

すべてのオブジェクトには、4 桁の 16 進数で表された 16Bit インデックスでアドレスされ、グループ毎にオブジェクトディクショナリ内に配置されます。

Modbus の使用方法については「4-3 プロファイルエリア」~「4-7 手動要求データコマンドの実行手順」を参照してください。

4-1 概要

4-1-1 オブジェクトディクショナリ構成

すべてのオブジェクトは、4 桁の 16 進数で表された 16bit インデックスでアドレスされ、グループ毎にオブジェクトディクショナリ内に配置されます。

CoE(CAN application protocol over EtherCAT)オブジェクトディクショナリの構成を以下に示します。

<u> </u>	<u> </u>			
Index(Hex)	オブジェクト			
0x0000 ~ 0x0FFF	Data Type Area(データタイプエリア)			
0x1000 ~ 0x1FFF	Communication Profile Area(CoE コミュニケーションエリア)			
0x2000 ~ 0x5FFF	Manufacturer Specific Profile Area(メーカスペックエリア)			
0x6000 ~ 0x9FFF	Standardized Device Profile Area (プロファイルエリア)			
0xA000 ~ 0xFFFF	Reserved			

表 4-1-1-1 オブジェクトインデックス構成

4-1-2 データタイプエリア

データタイプは、オブジェクトディクショナリに含まれるオブジェクトのデータタイプのインデックスを示します。インデックス:0x0001~0x001Fには標準データタイプで、インデックス 0x0020~0x07FFには、特殊定義のデータタイプが割り付けられています。

	<u>表 4-1-2-1 オブジェクトディクショナリ データタイプ(1/2)</u>				
Index	Data Type	サイズ	説明	SUPPORT	
0x0000	NULL	0	データ領域を持たない	_	
0x0001	BOOLEAN	1bit	0 or 1	_	
0x0002	INTEGER8	1byte	-128 ~ 127	0	
0x0003	INTEGER16	2byte	-32768 ~ 32767	0	
0x0004	INTEGER32	4byte	-2147483648~2147483647	0	
0x0005	UNSIGNED8	1byte	0~255	0	
0x0006	UNSIGNED16	2byte	0~65535	0	
0x0007	UNSIGNED32	4byte	0~4294967295	0	
0x0008	REAL32	4byte	浮動小数点 32bit(float)	_	
0x0009	VISIBLESTRING	_	文字列	0	
0x000A	OCTETSTRING	_	文字列	_	
0x000B	REAL64	8byte	浮動小数点 64bit(double)	_	
0x000C	TIMEOFDAY	6byte	日時	_	
0x0016	UNSIGNED24	3byte	0~16777215	_	
0x0018	UNSIGNED40	5byte	0~1099511627775	_	
0x0019	UNSIGNED48	6byte	0~281474976710655	_	
0x001A	UNSIGNED56	7byte	0~72057594037927935	_	
0x001B	UNSIGNED64	8byte	0~18446744073709551615	_	
0x001C	SAFETY	_	_	_	
0x0021	PDOMAPPING	_	PDO に登録するデータ	0	
0x0023	IDENTITY	20byte	アイデンティティデータ構造体	0	
0x0025	COMMAND	_	_	_	
0x0027	PDOCOMPAR	-	_	_	
0x0028	ENUM	_	_	_	

表 4-1-2-1 オブジェクトディクショナリ データタイプ(1/2)

表 4-1-2-1 オブジェクトディクショナリ データタイプ(2/2)

Index	Data Type	サイズ	説明	SUPPORT
0x0029	SMPAR	_	_	_
0x002A	RECORD	_	構造体	0
0x002B	BACKUP	_	_	_
0x002C	MDP	_	_	_
0x002E	FSOEFRAME	_	_	_
0x002F	FSOECOMMPAR	_	_	_
0x0030	BIT1	1bit	_	_
0x0031	BIT2	1bit	_	_
0x0032	BIT3	1bit	_	_
0x0033	BIT4	1bit	_	_
0x0034	BIT5	1bit	_	_
0x0035	BIT6	1bit	_	_
0x0036	BIT7	1bit	_	_
0x0037	BIT8	1bit	_	_
0x0038	ERRORHANDLING	_	_	_
0x0039	DIAGHISTORY	_	_	_
0x003A	SYNCSTATUS	_	_	_
0x003B	SYNCSETTINGS	_	_	_
0x003C	CYCLICTIMES	_	_	_

本プロファイルで使用するデータ型は、SPT 項目がOとなっています。表 4-1-2-1 のインデックスに記述がない番号についてはすべて予約領域となっています。

4-2 CoE コミュニケーションエリア

CoE コミュニケーションオブジェクト一覧と、オブジェクトタイプ、データ長、アクセス方向について示します。

表 4-2-1 CoE コミュニケーションエリア(1/2)

Index	Sub-Index	Object Type	Name	Data Type	Dir
0x1000	0x00	VAR	デバイスタイプ	UINT32	RO
0x1001	0x00	VAR	エラーレジスタ	UINT8	RO
0x1008	0x00	VAR	デバイス名	VISIBLESTRING	RO
0x1009	0x00	VAR	ハードウェアバージョン	VISIBLESTRING	RO
0x100A	0x00	VAR	ソフトウェアバージョン	VISIBLESTRING	RO
	-	ARRAY	パラメータ保存	-	-
0x1010	0x00	-	エントリー数	UINT8	RO
	0x01	-	パラメータ保存	UINT32	RW
	-	ARRAY	パラメータ初期化	-	-
0x1011	0x00	-	エントリー数	UINT8	RO
	0x01	-	パラメータ初期化	UINT32	RW
	-	RECORD	アイデンティティ	-	-
	0x00	-	エントリー数	UINT8	RO
0 1010	0x01	-	ベンダーID	UINT32	RO
0x1018	0x02	-	プロダクトコード	UINT32	RO
	0x03	-	リビジョン番号	UINT32	RO
	0x04	-	シリアル番号(Not Support)	UINT32	RO
	-	RECORD	受信 RxPDO マッピング	PDO Mapping	-
0x1600	0x00	-	RxPDO へのエントリー数	UINT8	RO
~	0x01		1 番目にマッピングするオブジェクト		
0x1603	~	-	•••	UINT32	RO
	0×40		64 番目にマッピングするオブジェクト		
	-	RECORD	送信 TxPDO マッピング	PDO Mapping	_
0x1A00	0x00	-	TxPDO へのエントリー数	UINT8	RO
~	0x01		1 番目にマッピングするオブジェクト		
0x1A03	~	-	•••	UINT32	RO
	0x40		64 番目にマッピングするオブジェクト		
	_	RECORD	送信 TxPDO マッピング	PDO Mapping	-
	0x00	ı	TxPDO へのエントリー数	UINT8	RO
0x1A10	0x01		1 番目にマッピングするオブジェクト		
	~	-	•••	UINT32	RO
	0x09		9 番目にマッピングするオブジェクト		
	_	RECORD	送信 TxPDO マッピング	PDO Mapping	_
	0x00	_	TxPDO へのエントリー数	UINT8	RO
0x1A11	0x01		1 番目にマッピングするオブジェクト		
	~	_		UINT32	RO
	0x09		9番目にマッピングするオブジェクト		
	_	ARRAY	SM(Sync Manager)通信タイプ	-	
	0x00	_	エントリー数	UINT8	RO
0x1C00	0x01		SMO のコミュニケーションタイプ		
	~	-		UINT8	RO
	0×04		SM3 のコミュニケーションタイプ		
	-	ARRAY	SM2 PDO Assignment	-	
0.46:5	0x00	-	エントリー数	UINT8	RO
0x1C12	0x01		PDO で割り当てられたオブジェクト		DIA(==)
	~	-		UINT16	RW(RO)
	0x04				

表 4-2-1 CoE コミュニケーションエリア(2/2)

Index	Sub-Index	Object Type	Name	Data Type	Dir
	-	ARRAY	SM3 PDO Assignment	-	-
	0x00	-	エントリー数	UINT8	RO
0x1C13	0x01		PDO で割り当てられたオブジェクト		
	~	-		UINT16	RW(RO)
	0x06				
	_	RECORD	SM0~SM3 Synchronization	_	-
0x1C32	0x00	-	同期パラメータ数	UINT8	RO
~	0x01	-	同期タイプ	UINT16	RW(RO)
0x1C33	0x02	-	サイクルタイム	UINT32	RW(RO)
	0x03	-	シフトタイム	UINT32	RW(RO)

0x1000~0x1FFF でリストにないインデックスは、予約領域です。

4-2-1 デバイスオブジェクト詳細

Index	名称	機能				
0x1000	デバイスタイプ	ターゲット機器の設定パラメータ				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	デバイスタイプ		UINT8	RO	-	0x00010401

Index	名称	機能				
0x1001	エラーレジスタ	サブデバイスのエラー状態を示します。				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	デバイスタイプ 0x01: 一般エラー 0x10: 通信エラー 0x20: デバイスプロファイルエラー		UINT8	RO	-	0x00010401

Index	名称		機能			
0×1008	デバイス名	製品デバイスの名称を	表します。			
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	製品のデバイスの名称		Visible String	RO	-	文字列

Index	名称	機能				
0×1009	ハードウェアバージョン	製品のハードウェアバージョンを表します。				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	製品のハードウェアバージョン		Visible String	RO	-	文字列

Index	名称	機能				
0x100A	ソフトウェアバージョン	製品のソフトウェアバージョンを表します。				
Sub-Index			Data Type	Dir	PDO map	初期値
0x00	製品のソフトウェアバージョン		Visible String	RO	-	文字列

Index	名称		機能	能		
0x1010	パラメータ保存	パラメータを保存します。				
Sub-Index			Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x01
0x01	パラメータ保存		UINT32	RW	-	0x00000000

※ 誤って保存することがないように特定の数値をサブインデックスに書き込んだ時のみ実行します。 特定の数値は以下の通りです。

MSB			LSB
е	V	а	S
0x65	0x76	0x61	0x73

- ※ Read 時は、0x00000000 を表示します。
- ※ EtherCAT メインデバイスによっては、特殊な操作が必要な場合があります。

Index	名称	機能				
0x1011	パラメータ初期化	パラメータを初期化します。				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x01
0x01	パラメータ初期化		UINT32	RW	-	0x00000000

※ 誤って初期化することがないように特定の数値をサブインデックスに書き込んだ時のみ実行します。 特定の数値は以下の通りです。

MSB			LSB
d	а	0	
0x64	0x61	0x6F	0x6C

- ※ Read 時は、0x00000000 を表示します。
- ※ EtherCAT メインデバイスによっては、特殊な操作が必要な場合があります。

Index	名称 機能						
0x1018	アイデンティティ オブジェクト	サブデバイスデバイスの情報を表示します。					
Sub-Index	機能		Data Type	Dir	PDO map	初期値	
0x00	エントリー数		UINT8	RO	-	0x04	
0x01	ベンダーID		UINT32	RO	ı	0x0000058F	
0x02	プロダクトコード		UINT32	RO	-	0x00050003	
0x03	リビジョン No		UINT32	RO	ı	0x00000000	
0x04	Not Supported [インヒビットタイプ]		UINT32	RO	1	0x00000000	

Index	名称	名称 機能					
0x1600	受信 PDO マッピング 1	RxPDO1 マッピングオブジェクトディクショナリのエントリー					
Sub-Index	機能		Data Type	Dir	PDO map	初期値	
0x00	エントリー数		UINT8	RO	-	0x40	
0x01	出カデータエリア 0x7000 のデータ(1)		UINT32	RO	-	0x70000008	
1	\downarrow		1	1	1	Ţ	
0x40	出力データエリア 0x703F のデータ(64)		UINT32	RO	-	0x703F0008	

Index	名称	機能				
0x1601	受信 PDO マッピング 2	RxPDO2 マッピングオブジェクトディクショナリのエントリー				
Sub-Index	機能	機能		Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x40
0x01	出力データエリア 0x7040 のデータ(65)		UINT32	RO	-	0x70400008
1	\downarrow		1	1	1	↓ ↓
0x40	出力データエリア 0x707F のデータ(128)		UINT32	RO	-	0x707F0008

Index	名称	機能					
0x1602	受信 PDO マッピング 3	RxPDO3 マッピングオブジェクトディクショナリのエントリー					
Sub-Index	機能		Data Type	Dir	PDO map	初期値	
0x00	エントリー数		UINT8	RO	-	0x40	
0x01	出力データエリア 0x7080 のデータ(129)		UINT32	RO	-	0x70800008	
Ţ	↓		1	1	1	1	
0x40	出力データエリア 0x70BF のデータ(192)		UINT32	RO	-	0x70BF0008	

Index	名称	機能				
0x1603	受信 PDO マッピング 4	RxPDO4 マッピングオブジェクトディクショナリのエントリー				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x40
0x01	出力データエリア 0x70C0 のデータ(193)	1	UINT32	RO	-	0x70C00008
↓	↓		1	1	1	1
0x40	出力データエリア 0x70FF のデータ(256)		UINT32	RO	-	0x70FF0008

Index	名称 機能					
0x1A00	送信 PDO マッピング 1	TxPDO1 マッピングオブジェクトディクショナリのエントリー				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x40
0x01	入力データエリア 0x6000 のデータ(1)		UINT32	RO	-	0x60000008
1	↓		1	\downarrow	Ţ	↓
0x40	入力データエリア 0x603F のデータ(64)		UINT32	RO	-	0x603F0008

Index	名称	機能				
0x1A01	送信 PDO マッピング 2	TxPDO2 マッピングオブジェクトディクショナリのエントリー				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x40
0x01	入力データエリア 0x6040 のデータ(65)		UINT32	RO	-	0x60400008
1	\downarrow		↓	1	1	\downarrow
0x40	入力データエリア 0x607F のデータ(128)		UINT32	RO	-	0x607F0008

Index	名称	機能				
0x1A02	送信 PDO マッピング 3	TxPDO3 マッピングオブジェクトディクショナリのエントリー				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x40
0x01	入力データエリア 0x6080 のデータ(129)		UINT32	RO	-	0x60800008
1	\downarrow		1	1	1	1
0x40	入力データエリア 0x60BF のデータ(192))	UINT32	RO	-	0x60BF0008

Index	名称	機能				
0x1A03	送信 PDO マッピング 4	TxPDO4 マッピングオブジェクトディクショナリのエントリー				
Sub-Index	機能	機能		Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	ı	0x40
0x01	入力データエリア 0x60C0 のデータ(193)	1	UINT32	RO	_	0x60C00008
1	\downarrow		1	\downarrow	\downarrow	1
0x40	入力データエリア 0x60FF のデータ(256)		UINT32	RO	-	0x60FF0008

Index	名称	機能				
0x1A10	送信 PDO マッピング 17	TxPDO17 マッピングオブジェクトディクショナリのエントリー				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x40
0x01	エラー状況 0x6800 のインデックス 1 のデ	ータ	UINT32	RO	-	0x68000120
1	\downarrow		1	1	↓	1
0x09	エラ一状況 0x6800 のインデックス 9 のデ	ータ	UINT32	RO	ı	0x68000920

Index	名称	機能					
0x1A11	送信 PDO マッピング 18	TxPDO18 マッピングオブジェクトディクショナリのエントリー					
Sub-Index	機能		Data Type	Dir	PDO map	初期値	
0x00	エントリー数		UINT8	RO	-	0x40	
0x01	エラ一状況 0x6900 のインデックス 1 のデ	ータ	UINT32	RO	-	0x69000120	
1	\downarrow		1	\downarrow	\downarrow	1	
0x09	エラ一状況 0x6900 のインデックス 9 のデ	ータ	UINT32	RO	_	0x69000920	

4-3 プロファイルエリア

CoE のプロファイルエリアのオブジェクト一覧と、データ長、アクセス方向について示します。

表 4-3-1 CoE プロファイルエリア

		01: 1	<u>扱する「 OOE プログアイルエファ</u>			
Index	Sub-Index	Object Type	Name	Data Type	Dir	PDO mapping
0x2000	_	RECORD	ターゲット機器設定 1	-	RW	No
\downarrow	Ţ	Ţ	↓	1	\downarrow	\downarrow
0×2007	_	RECORD	ターゲット機器設定 8	-	RW	No
0x2400	-	RECORD	COM ポート設定 1	-	RW	No
0x2401	-	RECORD	COM ポート設定 2	-	RW	No
0×2402	-	RECORD	COM ポート設定 3	-	RW	No
0x2403	-	RECORD	COM ポート設定 4	-	RW	No
0x3000	-	RECORD	モニタデータコマンド 1	-	RW	No
1	1	1	↓	1	1	1
0x301F	_	RECORD	モニタデータコマンド 32	-	RW	No
0x4000	_	RECORD	即時要求データコマンド 1	-	RW	No
Ţ	Ţ	1	↓	1	1	Ţ
0x401F	_	RECORD	即時要求データコマンド 32	-	RW	No
0x4100	_	RECORD	手動要求データコマンド 1	-	RW	No
Ţ	Ţ	↓	↓	1	\downarrow	1
0x4107	_	RECORD	手動要求データコマンド 8	-	RW	No
0x5000	_	RECORD	モニタデータコマンド エラーステータス 1	-	RW	No
Ţ	Ţ	↓	↓	1	\downarrow	\downarrow
0x501F	_	RECORD	モニタデータコマンド エラーステータス 32	_	RW	No
0x5400	_	RECORD	即時要求データコマンド エラーステータス 1	-	RW	No
Ţ	Ţ	↓	↓	1	\downarrow	\downarrow
0x541F	_	RECORD	即時要求データコマンド エラーステータス 32	-	RW	No
0x5500	_	RECORD	手動要求データコマンド エラーステータス 1	-	RW	No
Ţ	Ţ	↓	↓	1	\downarrow	\downarrow
0x5507	_	RECORD	手動要求データコマンド エラーステータス 8	-	RW	No
0x5800	_	RECORD	即時要求データコマンド レスポンス 1	-	RW	No
Ţ	Ţ	1	↓	1	1	Ţ
0x581F	_	RECORD	即時要求データコマンド レスポンス 32	-	RW	No
0x5900	_	RECORD	手動要求データコマンド レスポンス 1	-	RW	No
Ţ	Ţ	1	↓	1	1	Ţ
0x5907	_	RECORD	手動要求データコマンド レスポンス 8	-	RW	No
0x6000	0x00	VAR	入力データエリア 1	UINT8	RO	TxPDO
Ţ	Ţ	Ţ	↓	1	1	\downarrow
0x60FF	0x00	VAR	入力データエリア 256	UINT8	RO	TxPDO
0x6800	-	RECORD	エラー状況エリア	_	RO	TxPDO
0x6900	_	RECORD	レスポンス状況エリア	_	RO	TxPDO
0x7000	0x00	VAR	出力データエリア 1	UINT8	RW	RxPDO
Ţ	Ţ	1	↓	1	1	\downarrow
0x70FF	0x00	VAR	出力データエリア 256	UINT8	RW	RxPDO

アド

4-3-1 ターゲット機器 設定パラメータ

「ターゲット機器設定パラメータ」ではターゲット機器毎に接続する COM ポート番号やターゲット機器のサブデバイス

レスを設定することができます。

オブジェクトの詳細を以下に示します。

表 4-3-1-1 ターゲット機器設定パラメータ オブジェクト詳細

Index	名称	機能				
0×2000 ~ 0×2007	ターゲット機器設定 1~8	ターゲット機器の設定パラメータ				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x03
0x01	サブデバイスアドレス		UINT16	RW	-	0x0000
0x02	COM ポート 0x00: 未使用 0x01: 1CH 0x02: 2CH 0x03: 3CH 0x04: 4CH		UINT8	RW	-	0x00
0x03	通信開始フラグ 0x00: 停止 0x01: 開始		UINT8	RW	-	0x00

■ 機能説明

- ・ターゲット機器毎に、接続する COM ポートを指定します。
- ・通信開始する際は、ターゲット機器毎に「通信開始フラグ」に 0x01 をセットします。 (正常に Modbus 通信を行う為には、予め COM ポート設定や、モニタデータコマンド設定等をしておく必要があります。)

■ 設定例

サブデバイスアドレス=1~2 のターゲット機器を 1CH、サブデバイスアドレス=10~11 のターゲット機器を 3CH に

接続する

場合の設定例を以下に示します。

表 4-3-1-2 ターゲット機器設定パラメータ 設定例

Index	Sub-Index	機能	値
0×2000	0x01	サブデバイスアドレス	0x0001
UX2000	0x02	COM ポート	0x01
0x2001	0x01	サブデバイスアドレス	0x0002
UX2001	0x02	COM ポート	0x01
0x2002	0x01	サブデバイスアドレス	0x000A
0X2002	0x02	COM ポート	0x03
0×2003	0x01	サブデバイスアドレス	0x000B
UX2003	0x02	COM ポート	0x03

4-3-2 COM ポート 設定パラメータ

「COM ポート設定パラメータ」では COM ポート(4CH)毎にシリアル通信の設定をすることができます。 オブジェクトの詳細を以下に示します。

表 4-3-2-1 COM ポート設定パラメータ オブジェクト詳細

Index	<u>我 ₹ 5 2 ↑ 00₩</u> 名称	ホート設定ハフメータ オノンェクト	機能			
0x2400 ~	11 11 11 11 11 11 11 11 11 11 11 11 11					
0x2400	COM ポート設定 1~4	COM ポートのシリアル通信設定パラ	メータ			
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x06
0x01	ポーレート 0x00: 1200 0x01: 2400 0x02: 4800 0x03: 9600 0x04: 19200 0x05: 38400 0x06: 57600 0x07: 115200		UINT8	RW	-	0x03
0×02	データ長 0x00: 7bit 0x01: 8bit		UINT8	RW	-	0x01
0×03	ストップビット 0x00: 1bit 0x01: 2bit		UINT8	RW	-	0x00
0×04	パリティ 0x00: なし 0x01: 偶数 0x02: 奇数		UINT8	RW	-	0x00
0×05	伝送モード 0x00: RTU モード 0x01: ASCII モード		UINT8	RW	-	0x00
0×06	シリアルインタフェース 0x00: RS232C 0x01: RS422 0x02: RS485		UINT8	RW	-	0x00

■ 機能説明

- ・COM ポート毎に、シリアル通信設定をします。
- ・「シリアルインタフェース」は、0x01、0x02 は RS422/RS485 ユニットのみ有効となります。RS422/RS485 ユニット時、0x02 以外は RS422 となります。

■ 設定例

COM ポート=1 のボーレートを 19200bps、データ長を 8bit、ストップビットを 1bit、パリティを偶数、伝送モードを RTU、シリアルインタフェースを RS232C と設定する場合の設定例を以下に示します。

表 4-3-2-2 COM ポート設定パラメータ 設定例

			· — ·· ·
Index	Sub-Index	機能	値
	0x01	ボーレート	0x04
	0x02	データ長	0x01
0×2400	0x03	ストップビット	0x00
UX2400	0x04	パリティ	0x01
	0x05	伝送モード	0x00
	0x06	シリアルインタフェース	0x00

4-3-3 モニタデータコマンド 設定パラメータ

「モニタデータコマンド設定パラメータ」では、常時デバイスのデータをモニタする為のモニタコマンドを登録することができます。

「EtherCAT Modbus ゲートウェイ」は、登録されたモニタデータコマンドによりターゲット機器と Modbus 通信し、デバイスデータを取得し続けます。

オブジェクトの詳細を以下に示します。

表 4-3-3-1 モニタデータコマンド設定パラメータ オブジェクト詳細

Index	人工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工					
0x3000 ~ 0x301F	モニタデータコマンド 1~32 モニタデータを読出すコマンドと、読出したデータの PDO への割付を登録					
Sub-Index	機	能	Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	_	0x06
0x01	ターゲット機器 ID (1~8)		UINT8	RW	-	0x00
0×02	ファンクションコード 0x01: コイル 0x02: 入カステータス 0x03: 保持レジスタ 0x04: 入カレジスタ		UINT8	RW	-	0x00
0x03	開始アドレス (0~65535)		UINT16	RW	-	0x0000
0x04	読出しレジスタ数 (1~128)		UINT8	RW	_	0x00
0x05	PDO オフセット (0~255)		UINT8	RW	_	0x00
0x06	モニタ周期 [msec] (1~60000) ※ 登録コマンド数やボーレートによっては、設定値の周期で動作することができませんのでご注意ください。		UINT16	RW	-	0x0000

■ 機能説明

- ・モニタデータコマンドは32個登録可能です。
- ・モニタデータコマンドで取得したデータは、「入力データエリア(0x6000+PDO オフセット)」に格納されます。
- ・ターゲット機器 ID は、「ターゲット機器設定パラメータ」のターゲット機器設定 1~8 に相当します。

■ 設定例

500msec 周期でターゲット機器 ID=1 の入力ステータス 10 番地から 13 番地まで読出したデータを、オフセット=0 (0x6000)に割当てる場合の設定例を以下に示します。

表 4-3-3-2 モニタデータコマンド設定パラメータ 設定例

Sub-Index	機能	値
0x01	ターゲット機器 ID	0x01
0x02	ファンクションコード	0x02
0x03	開始アドレス	0x000A
0x04	読出しレジスタ数	0x04
0x05	PDO オフセット	0x00
0x06	モニタ周期 [msec]	0x01F4

ターゲット機器 ID=1 のターゲット機器に対し、 [入力ステータス (02)]のファンクションを発行します。

レスポンスで受け取ったデータを 0x6000~ 0x6003に格納します。

上記を500msecの定周期で処理します。

4-3-4 即時要求データコマンド 設定パラメータ

「即時要求データコマンド設定パラメータ」では、デバイスへのデータ書込みを即時要求する為の即時要求データコマンドを登録することができます。

「EtherCAT Modbus ゲートウェイ」は、登録された即時要求データコマンドによりターゲット機器と Modbus 通信し、デバイスデータを書込みます。

オブジェクトの詳細を以下に示します。

表 4-3-4-1 即時要求データコマンド設定パラメータ オブジェクト詳細

Z T T T T T T T T T T T T T T T T T T T						
Index	名称	名称 機能				
0x4000 ~ 0x401F	即時要求データコマンド 1~32	即時要求データを書込むコマンドと、書込みデータの PDO への割付を登録			禄	
Sub-Index	機	能	Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x05
0x01	ターゲット機器 ID (1~8)		UINT8	RW	-	0x00
0x02	ファンクションコード 0x05: コイル 0x06: 保持レジスタ 0x0F: 複数コイル 0x10: 複数保持レジスタ		UINT8	RW	-	0x00
0x03	開始アドレス (0~65535)		UINT16	RW	-	0x0000
0x04	書込みレジスタ数 (1~128)		UINT8	RW	_	0x00
0x05	PDO オフセット (0~255)		UINT8	RW	_	0x00

■ 機能説明

- ・即時要求データコマンドは32個登録可能です。
- ・即時要求データコマンドで書込むデータは、「出力データエリア(0x7000+PDO オフセット)」に格納されているデータを使用します。
- ・ターゲット機器 ID は、「ターゲット機器設定パラメータ」のターゲット機器設定 1~8 に相当します。

■ 設定例

ターゲット機器 ID=1 のコイル 5 番地から 15 番地まで書込むデータを、オフセット=0(0x7000)に割当てる場合の設定例を以下に示します。

表 4-3-4-2 即時要求データコマンド設定パラメータ 設定例

Sub-Index	機能	値
0x01	ターゲット機器 ID	0x01
0x02	ファンクションコード	0x0F
0x03	開始アドレス	0x0005
0x04	書込みレジスタ数	0x0B
0x05	PDO オフセット	0x00

ターゲット機器 ID=1 のターゲット機器に対し、 [複数保持レジスタ (15)]のファンクションを発行 します。

上記を書込みデータが変更されたタイミングの み処理します。

4-3-5 手動要求データコマンド 設定パラメータ

「手動要求データコマンド設定パラメータ」では、デバイスへの書込み/読出しを任意のタイミングで要求する為の手 動要求データコマンドを登録することができます。

「EtherCAT Modbus ゲートウェイ」は、登録された手動要求データコマンドの「手動実行フラグ」が ON にされるタイ ミングでターゲット機器と Modbus 通信し、デバイスデータを読み書きします。

オブジェクトの詳細を以下に示します。

Index 0x4100 ~ 手動要求データコマンド 1~8 手動要求データを読書きするコマンドと、読書きデータの PDO への割付を登録 0x4107 Sub-Index Dir PDO map 初期値 機能 Data Type 0x00 エントリー数 UINT8 RO 0x06 0x01 ターゲット機器 ID (1~8) UINT8 RW 0x00 ファンクションコード 読出し 書込み 0x01: コイル 0x05: コイル 0x02 UINT8 RW 0x00 0x02: 入力ステータス 0x06: 保持レジスタ 0x03: 保持レジスタ 0x0F: 複数コイル 0x04: 入力レジスタ 0x10: 複数保持レジスタ 0x03 開始アドレス (0~65535) UINT16 RW 0x0000 0x04 読書きレジスタ数 (1~128) UINT8 RW 0x00 0x05 PDO オフセット (0~255) UINT8 RW0x00 手動実行フラグ UINT8 RW 0x00 0x060x00: OFF

表 4-3-5-1 手動要求データコマンド設定パラメータ オブジェクト詳細

■ 機能説明

0x01: ON

- ・手動要求データコマンドは8個登録可能です。
- ・手動要求データコマンドでファンクションコードが 0x01~0x04 までのとき、取得したデータは、「入力データエリ ア(0x6000+PDO オフセット)」に格納されます。
- ・手動要求データコマンドでファンクションコードが 0x05~0x10 までのとき、書込むデータは、「出カデータエリア (0x7000+PDO オフセット)」に格納されているデータを使用します。
- ・ターゲット機器 ID は、「ターゲット機器設定パラメータ」のターゲット機器設定 1~8 に相当します。
- ・「手動実行フラグ」は、0x01 が書かれたタイミングでデバイスデータを読書き⇒その後自動的に 0x00 にクリ アされます。

■ 書き込み時の設定例

ターゲット機器 ID=1 のコイル 5 番地から 15 番地まで書込むデータを、オフセット=0(0x7000)に割当てる場合の 設定例を以下に示します。

表 4-3-5-2 手動要求データコマンド 書き込み設定例

Sub-Index	機能	値
0x01	ターゲット機器 ID	0x01
0x02	ファンクションコード	0x0F
0x03	開始アドレス	0x0005
0x04	読書きレジスタ数	0x0B
0x05	PDO オフセット	0x00
0x06	手動実行フラグ	0x01

ターゲット機器 ID=1 のターゲット機器に対し、 [Force Multiple Coils (15)]のファンクションを発 行します。

上記を手動実行フラグに 0x01 が書かれた時に 処理します。

この時、処理が完了すると手動実行フラグは 0x00 になります。

■ 読み出し時の設定例

ターゲット機器 ID=1 のコイル 5 番地から 15 番地まで読出しデータを、オフセット=0(0x6000)に割当てる場合の設定例を以下に示します。

表 4-3-5-3 手動要求データコマンド 読み出し設定例

Sub-Index	機能	値
0x01	ターゲット機器 ID	0x01
0x02	ファンクションコード	0x01
0x03	開始アドレス	0x0005
0x04	読書きレジスタ数	0x0B
0x05	PDO オフセット	0x00
0x06	手動実行フラグ	0x01

¦ ターゲット機器 ID=1 のターゲット機器に対し、 | [Read Coil Status (01)]のファンクションを発行 | します。

上記を手動実行フラグに 0x01 が書かれた時に 処理します。

この時、処理が完了すると手動実行フラグは 0x00になります。

4-3-6 モニタデータコマンド エラーステータス

「モニタデータコマンド エラーステータス」では、モニタデータコマンド実行時のエラーステータスの詳細を確認することができます。

「EtherCAT Modbus ゲートウェイ」は、モニタデータコマンド実行時に何らかのエラーが発生すると、「エラー状況エリア (0x6800)」の該当箇所にエラー発生状況を書込み、エラーステータスの詳細を「モニタデータコマンド エラーステータス」に書込みます。

「エラー状況エリア」の詳細は「4-3-12 エラー状況エリア」を参照してください。

オブジェクトの詳細を以下に示します。

表 4-3-6-1 モニタデータコマンド エラーステータス オブジェクト詳細

Index			機能			
0x5000 ~	モニタデータコマンド	 モニタデータコマンドのエラーステータスを格納				
0x501F	エラーステータス 1~32	, , , , , , , , , , , , , , , , , ,				
Sub-Index	機	能	Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x04
0x01	ステータス 0x00: 正常 0x03: Modbus 例外レスポンス 0x04: 応答タイムアウト 0x05: エラーチェックエラー(CRC、L 0x06: 応答電文フォーマットエラー	_RC エラー)	UINT8	RO	-	0x00
0x02	シリアル通信エラー 0x00: なし 0x01: オーバーフローエラー 0x02: パリティエラー 0x03: フレーミングエラー 0x04: オーバーランエラー		UINT8	RO	-	0x00
0x03	Modbus 例外レスポンス 0x01: 不正ファンクション 0x02: 不正アドレス 0x03: 不正データ 0x04: サブデバイスデバイスエラー	etc	UINT8	RO	-	0x00
0x04	エラークリア 0x00: OFF 0x01: ON		UINT8	RW	_	0x00

■ 機能説明

- ・モニタデータコマンド 0x3000 に登録したコマンドに対するエラーステータスが 0x5000 に格納されます。
- ・「エラークリア」は、0x01 が書かれたタイミングでエラーステータスがクリアされ、その後自動的に 0x0000 に 0 がセットされます。
- ・「Modbus 例外レスポンス」は、接続するターゲット機器から異常時に返される「例外コード」になります。詳細はターゲット機器のマニュアルを参照してください。

■ エラー対応表

モニタデータコマンド、モニタデータコマンドエラーステータスデータ、エラー状況の対応表を以下に示します。

表 4-3-6-2 モニタデータコマンド エラーステータス対応表

モニタデータコマンド 登録インデックス	エラーステータス インデックス	エラー状況(0x6800)
0x3000	0x5000	SubIndex: 0x01 - 0x00000001
0x3001	0x5001	SubIndex: 0x01 - 0x00000002
1	1	1
0x301F	0x501F	SubIndex: 0x01 - 0x80000000

エラーの発生状況は、「エラー状況エリア(0x6800)」を参照します。

[例]

0x6800-0x01 が 0x00000011 の時 0x5000 と 0x5004 でエラーが発生中であることを示します。

4-3-7 即時要求データコマンド エラーステータス

「即時要求データコマンド エラーステータス」では、即時要求データコマンド実行時のエラーステータスの詳細を確認 することができます。

「EtherCAT Modbus ゲートウェイ」は、即時要求データコマンド実行時に何らかのエラーが発生すると、「エラー状況エリア(0x6800)」の該当箇所にエラー発生状況を書込み、エラーステータスの詳細を「即時要求データコマンドエラーステータス」に書込みます。

「エラー状況エリア」の詳細は「4-3-12 エラー状況エリア」を参照してください。

オブジェクトの詳細を以下に示します。

表 4-3-7-1 即時要求データコマンド エラーステータス オブジェクト詳細

Index			機能			
0x5400 ~	即時要求データコマンド	 即時要求データコマンドのエラーステータスを格納				
0x541F	エラーステータス 1~32	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 - 12 14 117			
Sub-Index	機	能	Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	_	0x04
0x01	ステータス 0x00: 正常 0x03: Modbus 例外レスポンス 0x04: 応答タイムアウト 0x05: エラーチェックエラー(CRC、L 0x06: 応答電文フォーマットエラー	LRC エラー)	UINT8	RO	-	0x00
0x02	シリアル通信エラー 0x00: なし 0x01: オーバーフローエラー 0x02: パリティエラー 0x03: フレーミングエラー 0x04: オーバーランエラー		UINT8	RO	-	0x00
0x03	Modbus 例外レスポンス 0x01: 不正ファンクション 0x02: 不正アドレス 0x03: 不正データ 0x04: サブデバイスデバイスエラー	etc	UINT8	RO	-	0x00
0x04	エラークリア 0x00: OFF 0x01: ON		UINT8	RW	-	0x00

■ 機能説明

- ・即時要求データコマンド 0x4000 に登録したコマンドに対するエラーステータスが 0x5400 に格納されます。
- ・「エラークリア」は、0x01 が書かれたタイミングでエラーステータスがクリアされ、その後自動的に 0x0000 に 0 がセットされます。
- ・「Modbus 例外レスポンス」は、接続するターゲット機器から異常時に返される「例外コード」になります。詳細はターゲット機器のマニュアルを参照してください。

■ エラー対応表

即時要求データコマンド、即時要求データコマンドエラーステータスデータ、エラー状況の対応表を以下に示します。

表 4-3-7-2 即時要求データコマンド エラーステータス対応表

即時要求データコマンド 登録インデックス	エラーステータス インデックス	エラー状況(0x6800)				
0x4000	0x5400	SubIndex: 0x05 - 0x00000001				
0x4001	0x5401 SubIndex: 0	SubIndex: 0x05 - 0x00000002				
↓	↓	↓				
0x401F	0x541F	SubIndex: 0x05 - 0x80000000				

エラーの発生状況は、「エラー状況エリア(0x6800)」を参照します。

「例1

0x6800-0x05 が 0x00000011 の時 0x5400 と 0x5404 でエラーが発生中であることを示します。

4-3-8 手動要求データコマンド エラーステータス

「手動要求データコマンド エラーステータス」では、手動要求データコマンド実行時のエラーステータスの詳細を確認 することができます。

「EtherCAT Modbus ゲートウェイ」は、手動要求データコマンド実行時に何らかのエラーが発生すると、「エラー状況エリア(0x6800)」の該当箇所にエラー発生状況を書込み、エラーステータスの詳細を「手動要求データコマンドエラーステータス」に書込みます。

「エラー状況エリア」の詳細は「4-3-12 エラー状況エリア」を参照してください。

オブジェクトの詳細を以下に示します。

表 4-3-8-1 手動要求データコマンド エラーステータス オブジェクト詳細

Index			機能			
0x5500 ~ 0x551F	手動要求データコマンド エラーステータス 1~8	手動要求データコマンドのエラーステー	-タスを格納			
Sub-Index	機	能	Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0x04
0x01	ステータス 0x00: 正常 0x03: Modbus 例外レスポンス 0x04: 応答タイムアウト 0x05: エラーチェックエラー(CRC、I	_RC エラー)	UINT8	RO	-	0x00
0x02	シリアル通信エラー 0x00: なし 0x01: オーバーフローエラー 0x02: パリティエラー 0x03: フレーミングエラー 0x04: オーバーランエラー		UINT8	RO	-	0x00
0x03	Modbus 例外レスポンス 0x01: 不正ファンクション 0x02: 不正アドレス 0x03: 不正データ 0x04: サブデバイスデバイスエラー	etc	UINT8	RO	-	0x00
0x04	エラークリア 0x00: OFF 0x01: ON		UINT8	RW	_	0x00

■ 機能説明

- ・手動要求データコマンド 0x4100 に登録したコマンドに対するエラーステータスが 0x5500 に格納されます。
- ・「エラークリア」は、0x01 が書かれたタイミングでエラーステータスがクリアされ、その後自動的に 0x0000 に 0 がセットされます。
- ・「Modbus 例外レスポンス」は、接続するターゲット機器から異常時に返される「例外コード」になります。詳細はターゲット機器のマニュアルを参照してください。

■ エラー対応表

手動要求データコマンド、手動要求データコマンドエラーステータスデータ、エラー状況の対応表を以下に示します。

表 4-3-8-2 手動要求データコマンド エラーステータス対応表

手動要求データコマンド 登録インデックス	エラーステータス インデックス	エラー状況(0x6800)
0x4100	0x5500	SubIndex: 0x09 - 0x00000001
0x4101	0x5501	SubIndex: 0x09 - 0x00000002
\downarrow	↓	↓
0x4107	0x5507	SubIndex: 0x09 - 0x00000080

エラーの発生状況は、「エラー状況エリア(0x6800)」を参照します。

「例1

0x6800-0x09 が 0x00000011 の時 0x5500 と 0x5504 でエラーが発生中であることを示します。

4-3-9 即時要求データコマンド レスポンス

「即時要求データコマンドレスポンス」では、即時要求データコマンド実行時のターゲット機器からの Modbus 通信応答結果の詳細を確認することができます。

「EtherCAT Modbus ゲートウェイ」は、即時要求データコマンド実行時にターゲット機器から Modbus 通信の応答結果を受信すると、「レスポンス状況エリア(0x6900)」の該当箇所にレスポンス受信状況を書込み、レスポンスの詳細を「即時要求データコマンド レスポンス」に書込みます。

「レスポンス状況エリア」の詳細は「4-3-13 レスポンス状況エリア」を参照してください。 オブジェクトの詳細を以下に示します。

表 4-3-9-1 即時要求データコマンドレスポンス オブジェクト詳細

Index	名称	機能					
0x5800 ~ 0x581F	即時要求データコマンド レスポンス 1~32	即時要求データコマンドのレスポンスを格納					
Sub-Index	機能		Data Type	Dir	PDO map	初期値	
0x00	エントリー数		UINT8	RO	_	0x04	
0x01	ステータス 0x00: 処理中/待機 0x01: 正常完了 0x03: MODBUS 例外レスポンス 0x04: 応答タイムアウト 0x05: エラーチェックエラー(CRC、L 0x06: 応答電文フォーマットエラー	-RC エラー)	UINT8	RO	-	0x00	
0x02	シリアル通信エラー 0x00: なし 0x01: オーバーフローエラー 0x02: パリティエラー 0x03: フレーミングエラー 0x04: オーバーランエラー		UINT8	RO	-	0x00	
0x03	Modbus 例外レスポンス 0x01: 不正ファンクション 0x02: 不正アドレス 0x03: 不正データ 0x04: サブデバイスデバイスエラー	etc	UINT8	RO	-	0×00	
0x04	レスポンスクリア 0x00: OFF 0x01: ON		UINT8	RW	-	0x00	

■ 機能説明

- ・即時要求データコマンド 0x4000 に登録したコマンドに対するレスポンスが 0x5800 に格納されます。
- ・「レスポンスクリア」は、0x01 が書かれたタイミングでレスポンスがクリアされ、その後自動的に 0x0000 に 0 が セットされます。
- ・「Modbus 例外レスポンス」は、接続するターゲット機器から異常時に返される「例外コード」になります。詳細はターゲット機器のマニュアルを参照してください。

■ レスポンス対応表

即時要求データコマンド、即時要求データコマンドレスポンスデータ、レスポンス状況の対応表を以下に示します。

表 4-3-9-2 即時要求データコマンド レスポンス対応表

即時要求データコマンド 登録インデックス	レスポンス インデックス	レスポンス状況(0x6900)
0x4000	0x5800	SubIndex: 0x05 - 0x00000001
0x4001	0x5801	SubIndex: 0x05 - 0x00000002
\downarrow	↓	↓
0x401F	0x581F	SubIndex: 0x05 - 0x80000000

レスポンスの受信状況は、「レスポンス状況エリア(0x6900)」を参照 します。

[例]

0x6900-0x05 が 0x00000011 の時 0x5800 と 0x5804 でレスポンスが受信済みであることを示します。

4-3-10 手動要求データコマンド レスポンス

「手動要求データコマンドレスポンス」では、手動要求データコマンド実行時のターゲット機器からの Modbus 通信応答結果の詳細を確認することができます。

「EtherCAT Modbus ゲートウェイ」は、手動要求データコマンド実行時にターゲット機器から Modbus 通信の応答結果を受信すると、「レスポンス状況エリア(0x6900)」の該当箇所にレスポンス受信状況を書込み、レスポンスの詳細を「手動要求データコマンド レスポンス」に書込みます。

「レスポンス状況エリア」の詳細は「4-3-13 レスポンス状況エリア」を参照してください。 オブジェクトの詳細を以下に示します。

表 4-3-10-1 手動要求データコマンド レスポンス オブジェクト詳細

Index	名称	機能					
0x5900 ~ 0x5907	手動要求データコマンド レスポンス 1~8	手動要求データコマンドのレスポンスを格納					
Sub-Index	機	能	Data Type	Dir	PDO map	初期値	
0x00	エントリー数		UINT8	RO	_	0x04	
0x01	ステータス 0x00: 処理中/待機 0x01: 正常完了 0x03: Modbus 例外レスポンス 0x04: 応答タイムアウト 0x05: エラーチェックエラー(CRC、L 0x06: 応答電文フォーマットエラー	-RC エラー)	UINT8	RO	-	0x00	
0x02	シリアル通信エラー 0x00: なし 0x01: オーバーフローエラー 0x02: パリティエラー 0x03: フレーミングエラー 0x04: オーバーランエラー		UINT8	RO	-	0x00	
0x03	Modbus 例外レスポンス 0x01: 不正ファンクション 0x02: 不正アドレス 0x03: 不正データ 0x04: サブデバイスデバイスエラー	etc	UINT8	RO	-	0×00	
0x04	レスポンスクリア 0x00: OFF 0x01: ON		UINT8	RW	-	0x00	

■ 機能説明

- ・手動要求データコマンド 0x4100 に登録したコマンドに対するレスポンスが 0x5900 に格納されます。
- ・「レスポンスクリア」は、0x01 が書かれたタイミングでレスポンスがクリアされ、その後自動的に 0x0000 に 0 が セットされます。
- ・「Modbus 例外レスポンス」は、接続するターゲット機器から異常時に返される「例外コード」になります。詳細はターゲット機器のマニュアルを参照してください。

■ レスポンス対応表

手動要求データコマンド、手動要求データコマンドレスポンスデータ、レスポンス状況の対応表を以下に示します。

表 4-3-10-2 手動要求データコマンド レスポンス対応表

手動要求データコマンド 登録インデックス	レスポンス インデックス	レスポンス状況(0x6900)
0x4100	0x5900	SubIndex: 0x09 - 0x00000001
0x4101	0x5901	SubIndex: 0x09 - 0x00000002
1	1	↓
0x4107	0x5907	SubIndex: 0x09 - 0x00000080

レスポンスの受信状況は、「レスポンス状況エリア(0x6900)」を参照 します。

[例]

0x6900-0x09 が 0x00000011 の時 0x5900 と 0x5904 でレスポンスが受信済みであることを示します。

4-3-11 入力データエリア

「入力データエリア」では、登録されているモニタデータコマンドによりターゲット機器から取得したデバイスデータを確認することができます。

「EtherCAT Modbus ゲートウェイ」は、登録されたモニタデータコマンドの設定に従いターゲット機器と Modbus 通信し、取得したデバイスデータを設定された PDO オフセットアドレスに格納します。

オブジェクトの詳細を以下に示します。

表 4-3-11-1 入力データエリア オブジェクト詳細

Index	名称	機能				
0x6000 ~	入力データエリア	入力データ(モニタデータ)の格納エリア				
0x60FF Sub-Index	機	能 Data Type Dir PDO map 初期値		初期値		
0x00	データ		UINT8	RO	TxPDO	0x00

■ 機能説明

- ・モニタデータコマンドの PDO オフセット=0 で登録したコマンドに対するデータが、0x6000 を先頭に格納されます。
- ・Modbus 通信が正常の場合、モニタデータコマンドで登録したモニタ周期の間隔でデータが更新されます。
 ※登録コマンド数やボーレートによっては、設定値の周期で動作することができませんのでご注意ください。

■ データ格納例

入力ステータスをモニタするようにモニタデータコマンドを登録していた場合の入力データの格納例を表 4-3-11-2 に示します。

入力レジスタをモニタするようにモニタデータコマンドを登録していた場合の入力データの格納例を表 4-3-11-3 に示します。

表 4-3-11-2 モニタデータコマンド 入力データ格納例 1(入力ステータス)

[モニタデータコマンド]

7 - 17 1			
Index	Sub-Index	機能	値
	0x01	ターゲット機器 ID	0x01
	0x02	ファンクションコード	0x02
0x3000	0×03	開始アドレス	0x000B
0x3000	0x04	読出しレジスタ数	0x20
	0×05	PDO オフセット	0×00
	0×06	モニタ周期 [msec]	0x03E8

[入力データ]

Index	Sub-Index	機能
0x6000	0x00	ターゲット機器 ID =1 入力ステータス 11~18 番地のデータ
0x6001	0x00	ターゲット機器 ID =1 入力ステータス 19~26 番地のデータ
0x6002	0x00	ターゲット機器 ID =1 入力ステータス 27~34 番地のデータ
0x6003	0x00	ターゲット機器 ID =1 入力ステータス 35~42 番地のデータ

表 4-3-11-3 モニタデータコマンド 入力データ格納例 2(入力レジスタ)

[モニタデータコマンド]

Index	Sub-Index	機能	値
	0x01	ターゲット機器 ID	0x01
	0x02	ファンクションコード	0x04
02001	0x03	開始アドレス	0x0004
0x3001	0x04	読出しレジスタ数	0x04
	0x05	PDO オフセット	0×04
	0x06	モニタ周期 [msec]	0x03E8

[入力データ]

		<u> </u>
Index	Sub-Index	機能
0x6004	0x00	ターゲット機器 ID =1 入力レジスタ4番地のデータ (上位データ)
0x6005	0x00	ターゲット機器 ID =1 入力レジスタ4番地のデータ (下位データ)
0×6006	0x00	ターゲット機器 ID =1 入力レジスタ 5 番地のデータ (上位データ)
0x6007	0x00	ターゲット機器 ID =1 入力レジスタ 5 番地のデータ (下位データ)
0x6008	0x00	ターゲット機器 ID =1 入力レジスタ 6 番地のデータ (上位データ)
0×6009	0x00	ターゲット機器 ID =1 入力レジスタ 6 番地のデータ (下位データ)
0x600A	0x00	ターゲット機器 ID =1 入力レジスタ 7 番地のデータ (上位データ)
0x600B	0x00	ターゲット機器 ID =1 入力レジスタ 7 番地のデータ (下位データ)

4-3-12 エラー状況エリア

「エラー状況エリア」では、登録されているモニタデータコマンド、即時要求データコマンド、手動要求データコマンドのエラー発生状況を確認することができます。

「EtherCAT Modbus ゲートウェイ」は、各コマンド実行時に何らかのエラーが発生すると、「エラー状況エリア (0x6800)」の該当箇所にエラー発生状況を書込みます。

エラーの詳細は各コマンドのエラーステータスを参照することで確認できます。

各コマンドのエラーステータスについては、「4-3-6 モニタデータコマンド エラーステータス」、「4-3-7 即時要求データコマンド エラーステータス」、「4-3-8 手動要求データコマンド エラーステータス」をそれぞれ参照してください。 オブジェクトの詳細を以下に示します。

Index	名称		機能			
0x6800	エラー状況エリア	エラー状況の格納エリア				
Sub-Index	機能		Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0×09
0x01	モニタデータコマンド エラー状況 (0x5000~0x501F)		UINT32	RO	TxPDO	0x0000000
0x02	予備		UINT32	RO	TxPDO	0x00000000
0x03	予備		UINT32	RO	TxPDO	0x00000000
0x04	予備		UINT32	RO	TxPDO	0x0000000
0x05	即時要求データコマンド エラー状況 (0x5400~0x541F)		UINT32	RO	TxPDO	0x00000000
0x06	予備		UINT32	RO	TxPDO	0x00000000
0x07	予備		UINT32	RO	TxPDO	0x00000000
0x08	予備		UINT32	RO	TxPDO	0x00000000
0x09	手動要求データコマンド エラー状況	₹ (0x5500~0x5507)	UINT32	RO	TxPDO	0x00000000

表 4-3-12-1 エラー状況エリア オブジェクト詳細

■ 機能説明

- ・エラー状況はそれぞれ該当するコマンドのエラーが発生すると、対象のビットが1になります。
- ・エラー状況はそれぞれ該当するコマンドのエラーステータスのエラークリアを ON することにより、対象のビットが 0 になります。

■ エラー状況 ビット対応図

エラー状況と対象コマンドの対応図を以下に示します。

[Sub-Index:0x01]

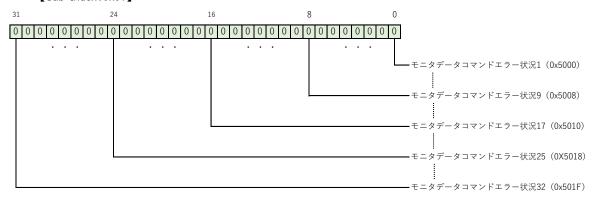


図 4-3-12-1 エラー状況 ビット対応図

4-3-13 レスポンス状況エリア

「レスポンス状況エリア」では、登録されている即時要求データコマンド、手動要求データコマンドのレスポンス受信状況を確認することができます。

「EtherCAT Modbus ゲートウェイ」は、各コマンド実行時にターゲット機器から Modbus 通信の応答結果を受信すると、「レスポンス状況エリア(0x6900)」の該当箇所にレスポンス受信状況を書込みます。

レスポンスの詳細は各コマンドのレスポンスを参照することで確認できます。

各コマンドのレスポンスについては、「4-3-9 即時要求データコマンド レスポンス」、「4-3-10 手動要求データコマンド レスポンス」をそれぞれ参照してください。

オブジェクトの詳細を以下に示します。

	表 4-3-13	-1 レスホンス状況エリア オフ	ンエクト計社			
Index	名称		機能			
0×6900	レスポンス状況エリア	レスポンス状況の格納エリア				
Sub-Index	機能	<u>ម</u>	Data Type	Dir	PDO map	初期値
0x00	エントリー数		UINT8	RO	-	0×09
0x01	予備		UINT32	RO	TxPDO	0x00000000
0x02	予備		UINT32	RO	TxPDO	0x00000000
0x03	予備		UINT32	RO	TxPDO	0x00000000
0x04	予備		UINT32	RO	TxPDO	0x00000000
0x05	即時要求データコマンド レスポンス	以状況 (0x5800~0x581F)	UINT32	RO	TxPDO	0x00000000
0x06	予備		UINT32	RO	TxPDO	0x00000000
0x07	予備		UINT32	RO	TxPDO	0x00000000
0x08	予備		UINT32	RO	TxPDO	0x00000000
0x09	手動要求データコマンド レスポンス	、状況 (0x5900~0x5907)	UINT32	RO	TxPDO	0x00000000

表 4-3-13-1 レスポンス状況エリア オブジェクト詳細

■ 機能説明

- ・レスポンス状況はそれぞれ該当するコマンドの応答を受信すると、対象のビットが1になります。
- ・レスポンス状況はそれぞれ該当するコマンドのレスポンスのレスポンスクリアを ON することにより、対象のビットが 0 になります。
- レスポンス状況 ビット対応図 レスポンス状況と対象コマンドの対応図を以下に示します。

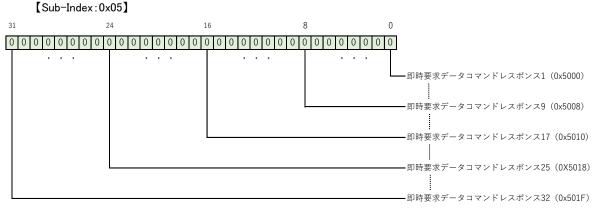


図 4-3-13-1 レスポンス状況 ビット対応図

4-3-14 出力データエリア

「出力データエリア」では、登録されている即時要求データコマンド及び手動要求データコマンドでターゲット機器に書 込むデバイスデータを登録することができます。

「EtherCAT Modbus ゲートウェイ」は、登録された即時要求データコマンド及び手動要求データコマンドの設定に従いターゲット機器とModbus 通信し、設定されたPDOオフセットアドレスに格納されているデバイスデータを書込みます。オブジェクトの詳細を以下に示します。

名称 機能 Index 0x7000 出力データエリア 出力データ(即時要求データ、手動要求データ)の格納エリア 0x70FF Data Type Sub-Index 機能 PDO map 初期値 Dir 0x00 データ UINT8 **RxPDO** 0x00 RW

表 4-3-14-1 出力データエリア オブジェクト詳細

■ 機能説明

- ・即時要求データコマンド及び手動要求データコマンドの PDO オフセット=0 で登録したコマンドが、0x7000 に格納されているデバイスデータを書込みます。
- ・即時要求データコマンドの場合、設定した PDO オフセットの出力データの値が変更されたタイミングでのみ、ターゲット機器へデバイスデータの書込みコマンドを実行します。

■ データ格納例

複数のコイルを書込むように即時要求データコマンドを登録していた場合の出力データの格納例を表 4-3-14-2 に示します。

複数の保持レジスタを書込むように即時要求データコマンドを登録していた場合の出力データの格納例を表 4-3-14-3 に示します。

表 4-3-14-2 即時要求データコマンド 出力データ格納例 1(複数コイル)

[即時要求データコマンド]

Index	Sub-Index	機能	値
	0x01	ターゲット機器 ID	0x01
	0x02	ファンクションコード	0x0F
0×4000	0x03	開始アドレス	0x0004
	0x04	書込みレジスタ数	0x20
	0x05	PDO オフセット	0x00

[出力データ]

Index	Sub-Index	機能
0×7000	0x00	ターゲット機器 ID =1 コイル 4~11 番地のデータ
0x7001	0x00	ターゲット機器 ID =1 コイル 12~19 番地のデータ
0x7002	0x00	ターゲット機器 ID =1 コイル 20~27 番地のデータ
0x7003	0x00	ターゲット機器 ID =1 コイル 28~35 番地のデータ

表 4-3-14-3 即時要求データコマンド 出力データ格納例 2(保持レジスタ)

[即時要求データコマンド]

Index	Sub-Index	機能	値
	0x01	ターゲット機器 ID	0x01
	0x02	ファンクションコード	0x10
0x4001	0x03	開始アドレス	0x0004
	0x04	書込みレジスタ数	0x04
	0x05	PDO オフセット	0x04

[出力データ]

>.1		
Index	Sub-Index	機能
0x7004	0x00	ターゲット機器 ID =1 保持レジスタ4番地のデータ(上位データ)
0x7005	0x00	ターゲット機器 ID =1 保持レジスタ4番地のデータ(下位データ)
0x7006	0x00	ターゲット機器 ID =1 保持レジスタ 5 番地のデータ (上位データ)
0x7007	0x00	ターゲット機器 ID =1 保持レジスタ 5 番地のデータ (下位データ)
0x7008	0x00	ターゲット機器 ID =1 保持レジスタ 6 番地のデータ (上位データ)
0x7009	0x00	ターゲット機器 ID =1 保持レジスタ 6 番地のデータ (下位データ)
0x700A	0x00	ターゲット機器 ID =1 保持レジスタ 7 番地のデータ (上位データ)
0x700B	0x00	ターゲット機器 ID =1 保持レジスタ 7 番地のデータ (下位データ)

4-4 Modbus プロトコルの概要

本ユニットで使用する Modbus 通信プロトコルの概要を説明します。

4-4-1 メッセージフレーム

メッセージフレームは、伝送モードに応じて以下のように定められています。

●Modbus ASCII メッセージフレーム

開始	アドレス	ファンクション	データ	LCR チェック	終了
(1 文字)	(2 文字)	(2 文字)	(N 文字)	(2 文字)	(2 文字)

●Modbus RTU メッセージフレーム

開始	アドレス	ファンクション	データ	CRC チェック	終了
(3.5 文字分の	(1Bvte)	(1Byte)	(N Byte)	(N Byte)	(3.5 文字分の
Sllent Interval)	(TDyte)	(TDyte)	(N byte)	(N byte)	Sllent Interval)

4-4-2 メッセージフレームの内容

伝送モード	特徴					
伝送モード	Modbus ASCII	Modbus RTU				
開始	開始文字を":"とする	3.5 文字分のサイレントインターバル				
	メインデバイスが要求する	メインデバイスが要求するサブデバイスアドレスを表す				
アドレス	サブデバイスアドレスは"1"~"247"が指定可能					
	"0"はブロードキャストクエリを表し、ファンクションによって指定可能					
ファンクション	要求の種類を示す					
データ	ファンクションに対応するデータフォーマットが定められている					
LRC/CRC チェック	LRC チェック CRC チェック					
終了	終了文字として"CR/LF"	3.5 文字分のサイレントインターバル				

4-5 Modbus 通信までの手順

本ユニットにてターゲット機器と Modbus 通信するまでのパラメータ設定等の手順を図 4-5-1 に示します。

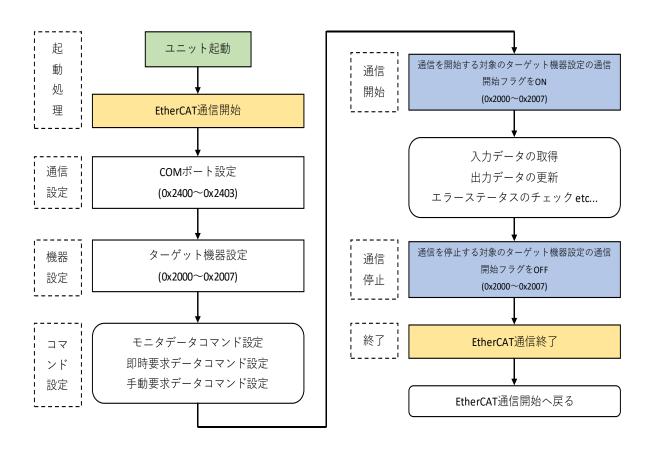


図 4-5-1 Modbus 通信までの手順

EtherCAT 通信開始後、COM ポート設定、ターゲット機器設定、各コマンドの設定を行い、Modbus 通信に必要な設定を完了すれば、ターゲット機器設定の「通信開始フラグ」を ON にして Modbus 通信を開始します。

Modbus 通信中はモニタデータの取得や、即時要求データの出力データの更新等を行い、ターゲット機器のデバイスデータを読み書きすることができます。

Modbus 通信を停止するには、ターゲット機器設定の「通信開始フラグ」を OFF にして Modbus 通信を停止します。

4-6 エラーチェックの手順

Modbus 通信中のエラー状況をチェックする手順を図 4-6-1 に示します。

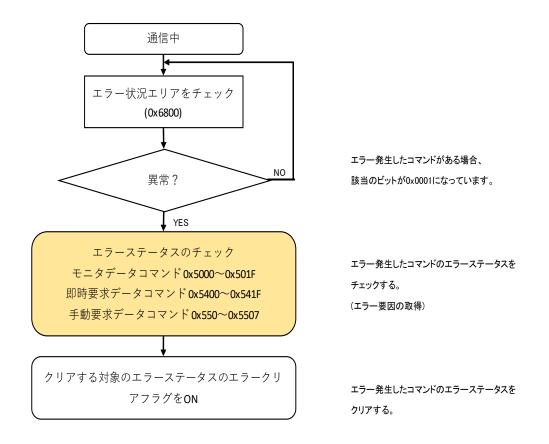


図 4-6-1 エラーチェック手順

エラー状況(0x6800)を監視し、エラーが発生したコマンドがある場合、該当のエラーステータスをチェックし、エラー要因を取得することができます。

エラーステータスをチェック後、エラーステータスをクリアする場合は、対象となるエラーステータスの「エラークリアフラグ」 を ON にすることでエラーステータスをクリアすることができます。

4-7 手動要求データコマンドの実行手順

手動要求データコマンドを実行する手順を図 4-7-1 に示します。

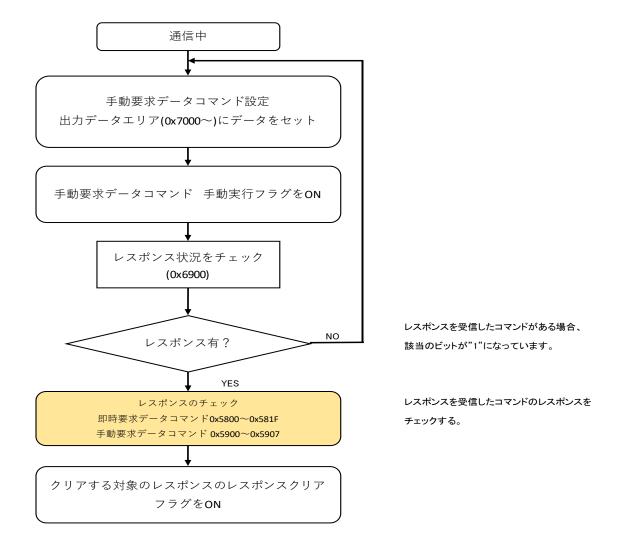


図 4-7-1 手動要求データコマンド実行手順

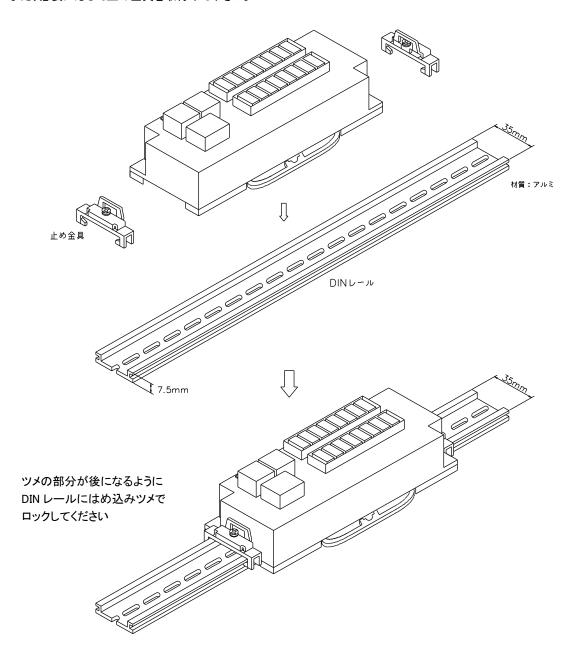
手動要求データコマンドを設定し、出力データエリアに書込むデータをセットした後、手動要求データコマンドの「手動書込みフラグ」を ON にすることで、手動要求コマンドを実行することができます。

手動要求コマンドが正常に完了したかをチェックするには、レスポンス状況(0x6900)を監視し、レスポンスを受信したコマンドの該当のレスポンスをチェックし、レスポンスの詳細を取得することができます。

レスポンスをチェック後、レスポンスをクリアする場合は、対象となるレスポンスの「レスポンスクリアフラグ」を ON にすることでレスポンスをクリアすることができます。

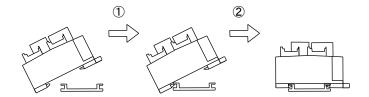
第5章 設置

本章では、本製品の取付け場所、DIN レールによる取付け、ねじによる取付けを以下について説明します。

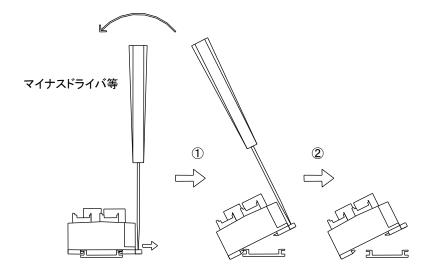

5-1 取付け場所

本製品を取付ける場合、盤内寸法や設置禁止場所を考慮し、取付けを行ってください。取付け場所について、以下の点にご注意願います。

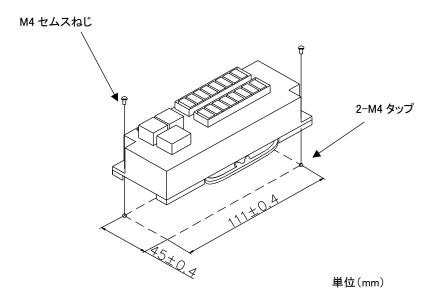
設置条件	取付け上の注意
制御盤内に取付ける場合	本製品の周辺部が、60℃以下となるように、制御盤の大きさ及び冷却の方法を検討の上、設計してください
発熱体の近くに取付ける場合	本製品の周辺部が、60℃以下となるように、発熱体からの幅射熱や、対流による温度上昇を避けるようにしてください
振動源の近くに取付ける場合	振動が本製品に伝わらないよう、防振器具を本製品の取付け面に取付けてください
腐食性ガスが侵入する場所に取付け	腐食性ガスの侵入を防ぐ工夫をしてください
る場合	すぐに影響は出ませんが、接触器関連の機器の故障原因になります
その他	高温・多湿の場所や、塵埃・鉄粉の多い雰囲気の場所には取付けないでください


5-2 DIN レールによる取付け

35mm 幅の DIN レールに取付けが可能です。 また、必要に応じて止め金具を取付けて下さい。


(1) 取付け方法

- ①下図のように DIN レールに片側(DIN レール取付け用ロックのついてない方)をはめ込みます。
- ②カチッと音がするまで DIN レール取付け用ロックが付いている方を押込みます。


(2) 取外し方法

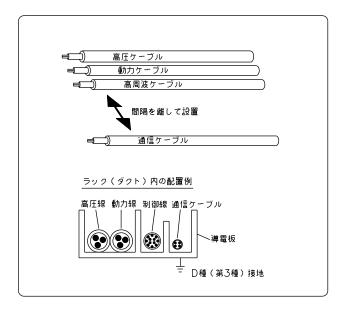
- ①下図のようにマイナスドライバ等で DIN レール取付け用ロックを外側に引っ張ります。
- ②そのままロックの付いている方を浮かして外します。

5-3 ねじによる取付け

M4 セムスねじによる取付けが可能です。 ねじ締付けトルク:0.6~1.08N·m(6.2~11kgf·cm)

5-4 配線に関する注意事項

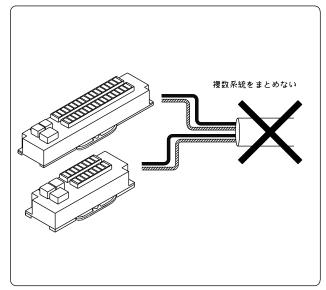
本製品は、万一の故障や事故を防ぐために、以下の安全設計をお願いします。


ケーブルの配置

・高圧線等からの分離

通信ケーブル及び I/O ケーブルは、高圧ケーブル、動力ケーブル、高周波ケーブル から 10cm以上離してください。

これらのケーブルから離す事ができない場合は、導電性のあるダクトを使用し、導電板で仕切って配線してください。


ダクトは D 種(第3種)接地を行ってください。

クロストーク防止

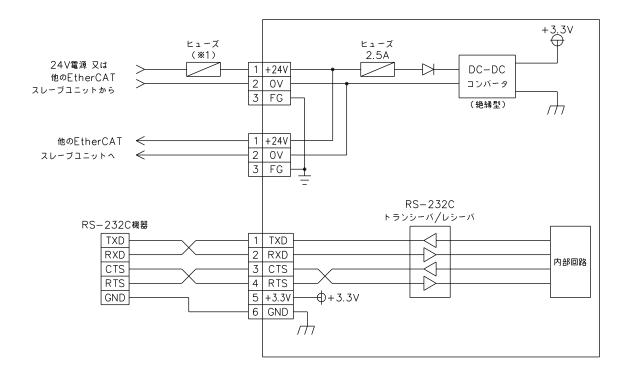
通信ケーブルは 1 系統 1 本としてください。 複数の系統を多芯のキャブタイヤケーブル でまとめて配線すると、クロストークにより 誤動作の原因になります。

また、通信ラインの往復を同一キャブタイヤケーブルで配線することはお避けください。

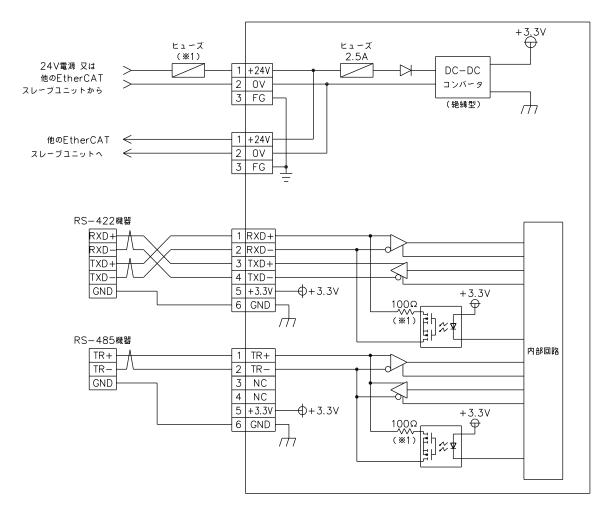


接続ケーブルについて

本製品に取付ける接続ケーブルの種類によっては、記載されている寸法以上の距離が必要になる場合があります。 コネクタの寸法やケーブル曲げ半径を考慮して設置してください。 EtherCAT シリーズ 第 6 章 接続


第6章 接続

6-1 EtherCAT 接続


EtherCAT シリーズ 第 6 章 接続

6-2 RS-232C

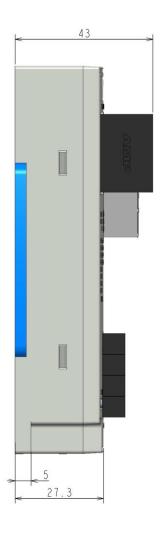
EtherCAT シリーズ 第 6 章 接続

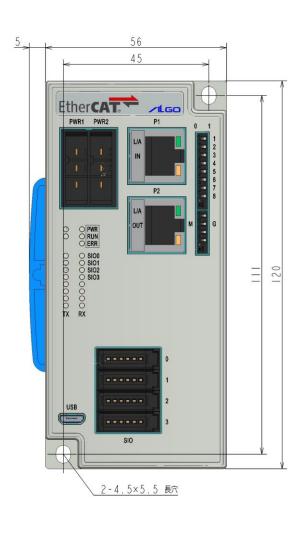
6-3 RS-422/485

(※1) 終端に接続する機器は、ソフト設定で終端設定を行ってください。 終端抵抗を物理的に入れる場合は、ソフト設定を OFF にしてください。

第7章 トラブルシューティング

本章では、初歩的な問題点の簡単な解決方法を説明します。


7-1 トラブルシューティング


症 状	チェック項目	処 置
電源が入らない (POWER LED が点灯しない)	DC24V 電源ケーブルは、接続されていますか?	電源ケーブルを接続してください
	電源電圧は DC20.4V~DC26.4V ですか?	規定電圧範囲内の電源を接続してください
正しく通信しない	ケーブルは、カテゴリ 5e 以上の EtherCAT ケーブルで接続されていますか?	カテゴリ 5e 以上のケーブルで接続してください
	EtherCAT IN、EtherCAT OUT の接続は正しいですか?	接続図に従って正しく接続してください
	ストレート配線を行っていますか?	接続図に従って正しく接続してください
	ID 設定は正しいですか?	正しく設定してください
RS-232C/422/485 が正しく 通信できない	接続は接続図通りですか?	接続図に従って接続してください
	通信設定は相手側と合っていますか?	「第 4 章 オブジェクトディクショナリ」を参照して通信設定を合わせてください
	ケーブルが長すぎませんか?	ボーレートの設定によりますが 9600bps 時で 15m 以内にしてください
	CTS/RTS は正しく接続されていますか?	接続図に従って接続してください
	終端抵抗は接続されていますか?	終端抵抗を物理的に接続するか、ソフト設定 で終端抵抗を ON にしてください

EtherCAT シリーズ第8章 外形寸法

第8章 外形寸法

8-1 ECEB002 ∕ ECEB003

単位(mm)

EtherCAT シリーズ 第 9 章 別売品

第9章 別売品

本製品に関する別売品を説明します。

型式や形状等は変更になる可能性がありますので、ご購入時は営業担当までお問合わせください。

9-1 コネクタ

9-1-1 電源コネクタ

	品 名	型 式	入り数	備考
20.00	ちゅう丸くん・でか丸くん 電源コネクタ	CON-TEC-01005	5 個	コンタクト 15 個含む

9-1-2 e-CON コネクタ

品 名	型 式	入り数	備考
ちゅう丸くん e-CON コネクタ 6 ピン	CON-ECN-02010	10 個	

EtherCAT シリーズ 第 10 章 製品保証内容

第10章 製品保証内容

ご使用につきましては、以下の製品保証内容をご確認いただきます様、よろしくお願いいたします。

10-1 無償保証について

本製品の品質は十分に留意して製造していますが、万一、製品に当社側の責任による故障や瑕疵が発生し、無償保証期間中であった場合、当社はお買い上げいただいた販売店または当社営業窓口を通じて無償で製品を修理またはお取替えさせていただきます。但し、出張修理が必要な場合は、技術者派遣の実費費用を申し受けます。また、故障製品の取替えに伴う、現地再調整、試運転は当社責務外とさせていただきます。

10-1-1 無償保証期間

製品の無償保証期間は、「お買い上げ後1年」もしくは、「銘板に記載されている製造年月より18ヶ月」のいずれか早く経過するまでの期間とさせていただきます。(有償修理品の故障に対しては、同一部位のみ修理後3カ月)無償保証期間終了後は有償での修理になります。

10-1-2 無償保証範囲

使用状態、使用方法及び使用環境などが、取扱説明書、ユーザーズマニュアルなどに記載された条件、注意事項などに従った正常な状態で使用されている場合に限定させていただきます。

10-1-3 有償保証について

以下の場合は無償保証期間内であっても有償修理とさせていただきます。

- ・お客様における不適切な保管や取扱い、不注意、過失、などにより生じた故障及びお客様のハードウェア、ソフトウェア設計内容に起因した故障。
- ・当社が承認する作業員以外による改造などの手を加えたことに起因する故障。
- ・火災、異常電圧などの不可抗力による外部要因及び地震、落雷、風水害などの天変地異による故障。
- ・納入後の輸送(移動)時の落下、衝撃など貴社の取扱い不適当により生じた故障損害の場合。

10-2 修理について

修理はセンドバックによる当社工場修理を原則とさせていただきます。この場合、弊社工場への送料はお客様負担にてお願いいたします。

修理期間は原則として修理品到着後、1週間以内に修理見積書の提出もしくは症状確認結果のご連絡をさせていただきます。

修理見積承認後、2週間以内に修理品を返却させていただきます。但し、故障内容によっては2週間以上要することがあります。

10-3 生産中止後の有償修理期間について

生産中止後の製品供給(補用品も含む)はできません。

生産中止した機種(製品)につきましては、生産を中止した年月より起算して7年間の範囲で修理を実施いたします。 但し、電子部品などのライフサイクルが短く、調達や生産が困難となる場合があります。 EtherCAT シリーズ 第 10 章 製品保証内容

10-4 機会損失などの保証責任の除外

無償保証期間内外を問わず、当社製品の故障に起因するお客様あるいはお客様の顧客側での機会損失ならびに当社製品以外への損傷、その他業務に対する補償は当社の保証外とさせていただきます。

10-5 製品の適用について

当社製品をご使用いただくにあたりましては、万一、故障・不具合などが発生した場合でも重大な事故に至らない用途である事及び故障・不具合発生時にはバックアップやフェールセーフ機能が効き外部でシステム的に実施されていることをご使用の条件とさせていただきます。

当社製品は人命や財産に大きな影響が予測される用途へのご使用については当社製品の適用を除外させていただきます。

ユーザーズマニュアル取扱い上のご注意

- (1) 本書の内容の一部または全部を、無断で複写、複製、掲載することは固くお断りします。
- (2) 本書の内容に関しては、製品改良のため、お断りなく仕様などを変更することがありますのでご了承ください。
- (3) 本書の内容に関しては万全を期しておりますが、万一ご不審な点や誤りなどお気付きのことがございましたらお手数ですが弊社までご連絡ください。その際、巻末記載の書籍番号も併せてお知らせください。

2023年 3月 初版 2025年 10月 第4版

書籍番号 72EC40023D

✓ LGロ 株式会社アルゴシステム

本社

〒587-0021 大阪府堺市美原区小平尾656番地

TEL(072)362-5067 FAX(072)362-4856

ホームページ http://www.algosystem.co.jp/